Exploring Textual Modeling using the

Umple Language

By
Dusan Brestovansky

Thesis

Presented to the Faculty of Graduate and Postdd@&andies in partial fulfillment of the

requirements for the degree Master in ComputemBeie

Ottawa-Carleton Institute for Computer Science
University of Ottawa
Ottawa, Ontario, K1IN 6N5

Canada

© Dusan Brestovansky, 2008

Acknowledgements

This research is supported by IBM Canada and tmér€ef Advanced Studies in

Ottawa.

I would like to extend a great thank you to thiofwing:

1. Dr. Timothy C. Lethbridge. As my advisor, superviaad mentor he has taught
me the axioms of proper research, software engimgeand pursuit of knowledge.
His critique and guidance through this processheasn extensive and invaluable.

2. The CRUuiSE lab composing of Dr. Lethbridge, Andfeevward and Omar
Badreddin. Our meetings on- and off-line have pnoteebe most educational in
many aspects of the research

3. IBM and associated software developers | was abietéract with and learn from
throughout the duration of my Master’s term.

4. My family and friends who have supported me in mamys through this

difficult journey. Thank you to my father Dusan, md atiana, and sister Natasa.

ADbstract

The purpose of our research is to explore the adgas and disadvantages of textual
modeling in software engineering, as comparededréditional graphical modeling
languages. A cornerstone of our work has beenekieldpment of a text-based modeling
language called Umple. Umple has a similar sytdalava, but it has been enhanced
with additional modeling constructs (associatiamtware patterns, etc.). Umple has the
ability to produce working systems by providinganslation into existing object-
oriented programming languages (such as Java) aad also be represented

diagrammatically in UML.

Graphical modeling languages have been developgthgroved over many years of
research. These languages allow software designérarchitects to view systems from
an abstract and high-level point of view. By usgngphical modeling languages we
abstract away much of the detail of the implemémnadf a design, and the process of

building large and complex systems is simplified.

Programming languages, on the other hand, arefaséide-grained views of the system,
incorporating algorithms, conditions and constigint addition to the high-level
components (such as classes) which could havedpssified using a graphical

modeling language as described above.

The separation between the high-level and finenghabstractions results in Software
Modeling and Software Construction as two sepdaesties in the development lifecycle.
This research explores ways to reduce complexityirerease the quality of software
systems, as well as increase the speed with wigtkras can be generated, maintained

or comprehended.

1

4

Table of Contents

INTRODUGCTION. ...ttt ettt eete e ettt e e st e s sabeseesbeeesasbeeeeaabseessreseabsessssseseesbesesassesessseenns 1
1.1 MOTIVATION AND OBUJIECTIVES. ...uuutittuieeittieeetieeestieeesnteesttesessatessttesetnieeenieesssaieresneerennnerees 1.
1.2 F N =1 o = 6
1.3 (@277 N 1] P 7

BACK GROUND ..ottt ettt ettt e e sbe e e s sbee s eab e s sasaeeesabaeesasbeeesaabaeesnseesanbeeessaseeesanbeeesanseees 9
2.1 OVERVIEW OF SOFTWAREIMODELING.cuuiittiiitteeitteeetteesttneesstneesstaneessneessteesstneessnnsessssneees 9
2.2 OVERVIEW OF UL ... ittt ettt mmmme et e e e e e s st e e et e e s et e e e st e e eeaneeseann e renneseen 10
2.3 SUBSET OFUML MODELED THROUGHUMPLE ...cuuiitiiitiiiiciiceeeseeeei et sesbesaneeetsessnestnssenseannns 11
2.4 OBJECTORIENTED PROGRAMMING PARADIGMuiiittneiirieririeeeitieeesrieeesstessssneessiaesssneessnnns 12
2.5 o[=1 | PSPPI 12
2.6 ANTLR FRAMEWORKuuiiitieeeiiieieee ettt ee e e s e e s e eaaa e e e e e saa e e e st e e e st e eatee st eeeareaesranss 13
2.7 JET FRAMEWORK ... ettt ettte ettt eeeee s e esteeseea e e s et e sesaaa e sasessba e e e baeessbaeesba e esbaneesesneeesraneassanss 13
2.8 RATIONAL SOFTWAREMODELLER.....ittittiiitietieeteiteeteestessteesnseateessestasrssstersseesneesneranenes 14
2.9 OTHER TEXTUAL MODELING LANGUAGES ANDHIGHLIGHTS ..uviiviiiiiiiieciiieeeeteeee e e 15

2 TR A = 01 = | Tog= Yo (o [= O o] 16

2.9.2 MOF Human-Usable Textual NOtAtioncccoiuueiiiiiiiiiii e eeaie e 18

2.9.3 UML ACHION SEMANTICS ...ccovuuiiiiiiiii e ie et e e et e e e e e e e e e e e et e e e e seeebaaeeeeeeresaaeeeees 22

RESEARCH QUESTIONS ...ttt et s ae et e e sate e e e e te e e e e ste e s neesneeenseesneeesneean 26
3.1 ABSTRACTION JUMP IN CODING....uuuiittneeituneetttaeettteesssaaesstesesssaessstaeesssneesstanesstereesreersrnnens 6.2
3.2 BRIDGING GAP BETWEEN MODELS AND CODEcvuiittiiiiiettietieiiesiiietnersseesasssssssseesneesnnesnneees 26
3.3 ADVANTAGES OF MODELING USING CODE-.....cuuiituiitniitniitnesnieeiieetiestseressneesertiessneesiessniesns 27
3.4 SIMPLIFY AND HASTEN DEVELOPMENT. . .cuvutetttteetttteeetneresteresneessnsssesneeestassesnaeessnnessrnneesnn. 27
3.5 SIMPLIFY MAINTENANCE ...ivttiiitteteteetttteeeettesstiees st eeesstnessteesstnresstareestreeetneerstaresennnaees 27
3.6 SEPARATE PROGRAMMING LANGUAGE AND MODELING LANGUAGEcvuiiiiieeiiiieeeeieeesieeesinnns 28

THE UMPLE SOLUTIONuoii ittt sttt ettt e s eare e saaae s s sabe e e ssbsesessaeessabaessenbessessneessasbesenn 29

4.1 INCREASING LEVEL OF ABSTRACTION. ..ttt ttttittnttteetnetatetsessntesseesiessnsessaessessasesnessneesnereinernns 30

4.2 UMPLE LANGUAGEctttteteeeeeeaeee e sttt et e e e e e e e e e et e eete e e e e s s n s n e st et e e e e e e aeannnnnnneeees 31
4.3 CODING ON THE LEVEL OFUML ...ttt s e 35.
4.4 CODING AND MODELING AS ONE TASK .. .ctteteeeeetettietiiitiantsiniiint e s aaesaeesaaeaaaesaeseeesesessnnsennsnnes 35
4.5 MODELING CONCEPTS WITHIN A PROGRAMMING LANGUAGEuvteitiieaiieeeniieessieeesnenee e 36
451 Mapping code t0 MOUEIINGcc.uviiiiiii e e e e e s er e ee e e e e e e 36
=T o] o] T aTo = La g 01U (=SSR 37
LY = Vo] o1 o T F= = L OSSR 38
MaPPING ASSOCIALIONS ...euvvieiieeiieesieemeemm e e steesteeeseeeseeesteeesteeassessmnamms e e sseeesteeesteeesteesseessseenseessssmmmnneeees 39
4.6 CHANGE OF PARADIGMuttttreeteteteeeeaasa st et eeteeessssasnn e e st eeeeeesesssaannnnn e neeeeeeeeseeasnnn 36
4.7 CODING BECOMES MODELING.cctttteteieiiiitirerereeeeeeteeeeas s sssnsenneeeaeeeesesssnnnnnnneneeeeseeeessannas 36.
4.8 MODEL CHANGE OVER TIMEctittittttittiettttiinitisa s as s e e e s esasaaesaeeaeesaeeessessssbsnstn s s e eeeeeeas 37
4.9 GENERATED SYSTEM AS BLACK BOX ...ttt tatti et e e eeeeeeeeeteeeesesssssbssssssssin s s asaaeeaesaseeseeeseessnnes 37
5 UMPLE LANGUAGE ...ttt sttt sa e st be e st e bt e e sbe e s seesbeeebeesnneesreean 42
5.1 IVIAIN CONCEPTS.....ctttteeeeetetee et es s st n ettt e e e e e e e s an et e et et e e e s es s san e e et e e e e e e s e s nmn e neeeeeeeens 43
5.2 WHEN TO START USINGUMPLEceiiiiiiiiiiittreeeee e et e e e s e s s e eeee e e s e s s sesn e e ee e e e e e e e e s nsnnnannns 6.4
5.3 FEATURES OFUMPLE ...t ettt s e e e e e e e e e e e e e et e e bbb e s e e 46
5.3.1 Hello WOrld UmPIe ...ttt e e e e e s e nrnneeeeeeeeeas 47
5.3.2 Class AtIFDULESueiiiiiieiie et sttt s r et e e s a e 48
5.3.3 Class Relationships - HIerarChiesccccoei it aa e 50
5.3.4 Class Relationships - ASSOCIAtIONSccccuurriiiiiiiiie e e e e e 53
5.3.5 Umple Separation Of CONCEIMNS.......uuuiiiiscceeeiiiiiiiieteiee e e erer e e e e e e sesssnrnneeeereeees 59
LSIRC I TN o] o] 1 ToF=Y i o o 0 IXeTo | oSSR 61
5.3.7 Design Patterns in UMPIe.........cueiiiiiiiiiii ittt ee e e e e e 62
6 UMPLE SOFTWARE ..ottt sttt st sttt bbbt sbe e bbb et ss e beesbenbe et enes 63
6.1 UMPLECORE ...cttttettttttitt e s e s e e e e e e e e e eetee et e eeaeeeseebeee e bt a s e s e e e e e e e e ee et eeeeeeeeeeeseessnnbbnns e s 64
6.1.1 UMPIE MELAMOUEL......uuiiiiiiiiiieee e e e e e e e e e e e e e aa e e e eeeeeeeaerrane 65
S0 2 [o o L= oo o o o1 1= SRR 69

(ST R T A AV I o Y £ = P 70

B.1.4 JAVA COUE GENEIALON......cceiiiutiiiee ittt e e ettt ee e s asb e e e s et e e e e s st e e e e e asnbeeeesanbeneeeeans 76
6.1.5 Other Eclipse plug-in related CONCEPLS.cccceeerurriiiiiiiiie e e e e e e 80
6.2 UML TOOL—UMPLERSM ... e e e e e e e e e e e e eeeeeeeenees 81
6.3 TESTING ...t tttteteettee et et e ettt e e e e e e e st et et e e e e e e e s ea s e e e et e e e e e e e ea s R nnn e n e e e e e e e e e e e annannne 85
6.3.1 Testing Of UMPIECOIE.......uuuiiiiiiiiiee et e e e e e e e e e e e e e e e e e annnes 87
6.3.2 Testing gENErated COUERuuuiiiiiiiie it e e e e e s r e e e e e e e s s e e e e aeeeseseaannnes 88
6.3.3 Testing of the UML COMPONENT........uuuuiicmmmmn e eeeeeeeeeieeveve s e e e e e e ae e s e e e e aaaaanaaees 90
6.3.4 UMPIERUNTIME .ottt e e e e e e e e e e bbb e e aeeeeeaaeaaeeeaas 91
6.4 UMPLEPAD ...ttt ettt e e e e e s s et e e e e e e s s ettt e e e e e e e e e s aan e e e ee et et e e e e e e e nnrnnreereeee e e e e eas 92
6.5 EVALUATION OF UMPLE AND UMPLE SOFTWARE— CASE STUDY ...ccvviviiiiiiiriiasiaereeeeeeereeseeeeennes 93
7 CONCLUSIONS ...ttt sttt ettt sttt b e et ae e eee e ehe s ea e s e e neebe e eb et ebesseneaseneaeeneesensns 96
7.1 RESEARCHCONTRIBUTIONS.eiitiiitieiiiteitttiisiias s as s s e e s e s asaeeaaeeaaeseeeeseessanbbnbb s n e e e eeeeas 96
7.2 IMPROVING MODELING LANGUAGEScutttttuttutiiiaassaeeeeeeaeaseesteteseesaessessressbsssnn s aaansaaeaesaeeens 99
7.3 FUTURE WORK AND POSSIBILITIES. ... cutetereettaeesesasiannrnnieeeeereeeesssaasnnnneeeeesesesessssnsnnnsnnneeeeeees 100
7.3.1 Expanding the Umple CONCEPLvvviiiiicceceee e e iie ettt e e e e e e e aaaaaeaaaeaaeaeaens 100
Modeling of state diagrams iN COUEo cmemmme et ee ettt eneeseeeaean 101
Business process modeling With UMPIE ...t emeemee et 101
Concurrency modeling With UMPIE ..ot ememe et ne s 102
Incorporation 0f OCL 10 UMPIEottt emmemma ettt s e e et entesneeseeenean 102
7.3.2 Improving the current state of Umple SOftWare coe.....cccccvvviiiiiiiie e, 102
7.3.3 Validating OUr @PPIrOACKN........icii i e e et e e s 103
MOTE rODUSE DUSINESS CASES........eiv i eccemene ettt emmemme ettt sbe et bt eenae et vemane 103
Validation through the Open SOUICE COMMUNITY. ..iccuieiieiitieeieiiiesitiestie et siemmneee e e e e sraeeneesnneeenree e 104
Combating industry resistance (in applying this EERAAIGM)oociiiiieiireie e 104
Using Umple as teaChiNg T0O0...........o ittt emeems ettt te s e s e sae e e e nee e 104
REFERENGCES ...ttt h et e bbbt eheat b e s bt b e st eneaeen e s b e s ene s 106
APPENDICES ...ttt ettt ettt e et s e et e e e et se e et sE2ae s £ e me e Reae Rt se et se e st e s enesaesesaeseeneseeneaen 110

APPENDIX1: UMPLE SYNTAX SPECIFICATION

APPENDIX2: AIRLINE EXAMPLEccccve....

viii

List of Tables

Table 1: Some of the most common Umple defaultsassdmptions.cccceeee. 43

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

Figure 22:

List of Figures

Basic sample system (diagram generatédhiggleRSM).ccoovvviviiineennn. 2
Umple code which resulted in the Clasgdm in Figure 1............ccccooeeeeennnn. 3
ECore metamodel [23].oooiiiiiieeeeeeiieiee ettt 17
Example of a family package as takernod#tUTN specification. 19
HUTN code which takes advantage of ti@lfapackage.ccccccceeeii 20
ASL EXAMPIE .o e 24
Umple code snippet using “unique” Keyward.............cccevvvvvviiiinieeeneieennes 38
Reflexive association eXample.cooeuuiiiiiiiiiiiiiiiiiiiiiiiiereeee e 39
Multiple associations between two ClaSSES...........uuvvrvvviveviviveriiiirnininnnn 39
Hello World Umple eXample.coe e 47
Elevator class with immutable attribute.............cccccovviiiiiiiiiiiieeee 49
Inheritance example using iSA keyward..............cccccvvvviiiiiiiiiiiieienieeenn, 51
Inheritance example using implicit interce declaration.ccccvvvvnee. 52
Explicit association declaration example............ccccceeiiiiiiieeeee, 54
Implicit association declaration example..........ccoooviiiiiiii e 55
Explicit association directionality @Xalioueviiiiiiiiiiiiiiiiiiiiieeeen 56
Implicit association directionality expley ..., 57
Reflexive association example.c..oooviiiiiiiiiiiiiiiiiiieieieeeie e 57
Namespace example. ... 59
Umple Software COMPONENTS.coiiiieiiiiiieeeieee e 63
UmpleCore high-level OVEIVIEW. ... s 64
UmpleCore metamodel...........eeceeeeeeiiiii e 65

Figure 23:EMF generated COUE.oo ittt emneme e ee e e 67

Figure 24: Compilation PrOCESS. oo s ss s s ssassensnenenes 69
Figure 25: Parser generation USAIZTLR ... ssevenennnennnes 71
Figure 26:Pre-generation algorithm. ... oo eeeieeiiiiiiiceceee e 75
Figure 27: Java Signature eXample.coueeeeeeerreererimimimininiriienern .. 75
Figure 29: Dependency diagram for an Airline exampl...........cccceeeeeiiiiie 383

Figure 30: Airline case study metamodel. ...occcoeoooooiiiiiiiii 94

Xi

Abbreviations

API: Application Programming Interface

OO: Object Oriented

RSM: Rational Software Modeler

ANTLR: ANother Tool for Language Recognition
AST: Abstract Syntax Tree

HUTN: Human-usable Textual Notation

UML.: Unified Modeling Language

MOF: MetaObject Facility

MDA: Model Driven Architecture

OMG: Object Management Group

Xii

1 Introduction

The purpose of this research is to explore theratdges and disadvantages of textual
modeling in software engineering, as comparededréditional graphical modeling
tools and languages. As a major part of the wokdeveloped a text-based modeling
language called Umple. Umple can be directly tratesl to an object oriented
programming language (such as Java), and als@tgréphical modeling language
UML. This research has been performed in collalbamawith the IBM CAS Ottawa,

therefore benefiting both the academic and indusirgmunities.

1.1 Motivation and Objectives

Graphical modeling languages have been studiednaprived over past decades. They
allow designers and architects to view systems fadmgh-level abstract point of view.

This approach simplifies designing large and compietems.

Programming languages, on the other hand, arefaséide-grained views of the system,
incorporating algorithms, conditions and constigias well as all of the high-level

components, such as classes, that can be spagsiregla graphical modeling language.

This separation between the two levels of abstvagesults in two separate tasks in the
development lifecycle: Modeling and implementingeTresults of these tasks are the

system model and the implementation, respectiviedghnically, the implementation can

be considered a type of model too, but modelingiges design abstractions and
programming provides computer abstraction. Howether separation between system
and implementation model leads to inevitable déferes between them, which may

develop over time or may even be present in tisé ¥ersion of the system.

To elaborate on the points made so far, let usdiite a small example; and will also
introduce some of the syntax of the Umple langua@er small RaceCar system has only
three classes: Vehicle, Car, and Person. Camnyiseadf Vehicle, and each Car may (or
may not) have a driver (and that driver is a Pexséigure 1 is the class diagram of such

a simple system (as generated by UmpleRSM).

= vehicle
= car + driver = Person
firsthame
0.1 0.1 | lastName

Figure 1: Basic sample system (diagram generatedropleRSM).

This very simple system lets us introduce Umple laigtlight some of its benefits. To
illustrate the power of Umple, Figure 2 shows tbhdewhich resulted in this generated

UML Class diagram.

class Vehicle{
class Car{
0.1 - 0.1 Persondriver,;

}
}

class Person{
firstName;
lastName;

}

Figure 2: Umple code which resulted in the Classgdam in Figure 1.

In the Umple process, one would usually start wighnUmple code first and then have
the appropriate diagrams generated. However, becagigissume the user is familiar
with UML, showing the class diagram first makesasier to draw the links between the

two.

Figure 2 shows us the most basic features of thpl&Jtanguage, but it is enough to
illustrate the points made earlier. The Umple cisd@oth concise and expressive. In just
nine lines of code we declared classes, inheritaartassociation with multiplicities and
bi-directionality, class attributes, and optionalername for an association end. In
addition to the class diagram, the implementatimsieds also generated. Class diagrams
are the platform independent view of the systerd,the implementation code is the
platform dependant view, as it contains fine grdidetails, such as a Facade class and
application logic (in this case, over 400 linesla¥a code were generated which
implement this simple system). Details of all tisagjenerated will be discussed further in

the thesis.

Both of these views are kept synchronized as Umpdie is updated or modified, not

requiring any special attention from the userslattthg them focus on the high level

3

modeling using Umple. For example, a change wheatotes that a Car has another
association to the class Person, which represeatsassengers, is only one extra line of
code, such asl‘-- * Person passengers; ”. We will elaborate on each point
further in the thesis, but this example illustrateacretely our approach to textual

modeling.

Moreover, Umple is an effort to unify programmingdamodeling, thereby simplifying
both. Modeling is simplified through the availatylof a simple and easily
understandable textual language, and programmisigiglified through Umple’s ability
to generate system code. This merge of tasks ie paskible through adding modeling

concepts, such as associations between classeprogramming language.

We hypothesize that Umple will reduce the timekets to perform the following
software activities:

» Develop — development time should be greatly redibezause the time it takes
to write and understand Umple is much less tharirtie it takes to write and
understand the underlying language. As the exastpi@ss, it is clear that writing
and understanding 9 lines of code takes much ile&sthan to do the same with
400 lines of code. Furthermore, Umple code greatiyices the number of
components one needs to understand to only theléwghones, further
facilitating faster development.

* Inspect — because Umple code is both concise atddan UML, code

inspection should become much easier. This is Isectiere are many fewer lines

to inspect, and the lines represent high-level taots allowing the user to focus
on a few high level components rather than veryyaw level ones.

Maintain — Due to the model-code duality of Umpjstems, maintenance also
should become much easier. In this context, maames refers to changing the
system and its documentation. This task become# fiaster because Umple
regenerates both the system code and the UML diresyas one task, without

requiring the developer to spend time on each.

There are also several disadvantages of graplEpe¢sentations of design, which have

been documented by Dwyer [8]. Of these, the onashwielate to our work are:

As systems grow in complexity, their diagrammagipresentations also grow,
sometimes far more than linearly, and generaliyvim dimensions, making the
structure difficult to understand from these diagsaThis problem can be
perhaps to some extent addressed using textualsesations. The proof of this
is that there exist large system implementatioas dhe written entirely in source
code without modelling in diagrams, yet are rekneasy to understand and
maintain. Understanding such large systems is oftade easier in part due to the
simplicity of the language used, and through tteefce of separation of concerns
and other sound software engineering principles.

As diagrams grow in size, optimal layout becomesaasingly difficult and time
consuming to calculate, and may contribute to tlygeaphical representations of a
system being difficult to understand or maintaiayaut, however, is not as

difficult of an issue when dealing with code, dadlte nature of text and textual

editors.
Dwyer has attempted to resolve these with a 3Dmest UML. We, however, believe
that a textual modeling is better able to solveéhgoints — in fact using three dimensions

may in fact be exactly the opposite of what is reeed

Even though testing is not explicitly part of thesearch, the Future Work section will
identify ideas and areas that could take advargégsmple to simplify testing. In
particular, future developments in Umple could gyesimplify testing through

automatic generation of test cases from the Umpiie.c

1.2 Audience

Umple is intended to simplify the development lifele of systems. Therefore, the target
audience of this research is individuals workinghvdML or other modeling languages,

or those involved in modeling, implementation, aimenance of software systems.

Furthermore, users of Umple are expected to have sxperience with object oriented
(O0) programming, and programming languages. Tineswedge will make it much
easier for users to absorb the Umple approach bedample follows the OO paradigm,
and experience with OO languages and UML will mdeeUmple language syntax much

easier to master.

1.3 Organization

The thesis begins with a review of related backgdoto our research. The background
review includes modeling and UML, a brief introdoatto object oriented programming
related to our research, the third-party toolsuBsed in this thesis, and two other textual-

modeling projects from which we have learned.

Included in the background discussion is a reviémadeling practices and
methodologies. Model-Driven Architecture (MDA) cha extended to work well with
the idea of Umple, and is therefore central todatlng Umple as part of development

process.

Chapter 3 will then formally introduce the reseagclestions explored within this thesis.

The answers to these questions are offered lat@ughout the thesis.

Next, the thesis discusses Umple as a solutioorteof these research questions in
Chapter 4. This is a purely theoretical and abstiscussion of the solution. Concrete
implementation details are provided in ChapterBaiier 6 then describes the
accompanying Umple software. This is a set of tadigh were developed as a proof of

the Umple concept.

The last chapter of the thesis, Chapter 7, sumesoar efforts and documents some of
the future research ideas which could make Umptiebable to meet the overall vision.

Chapter 7 also lists some of the ongoing effortettner researchers in the field of

Umple.

2 Background

Much background research has gone into the Umpleeq, the language, the process
with which Umple would work best, and the suppataoftware necessary to
demonstrate both that the Umple idea is soundtlatdt would be functional. This
section gives a brief overview of the concepts im&d with Umple in order to clarify the

need for a tool such as this textual modeling |laggu

2.1 Overview of Software Modeling

At a high level, software modeling is used to espmnodeling concepts and ideas within
a system at a specific level of abstraction. Maodghas been a part of sound
development processes for a long time. In theticadil sense, models would be created
after requirements have been gathered. These maldelg with requirements were the

driving force behind development.

The Object Management Group (OMG) proposed ModalddrArchitecture (MDA) as

a solution to the problem of separation of platfa®ependant and independent aspects in
systems [9, 11]. As Kurtev et. al. state, this apph to software development is still in
rapid evolution, with many high-profile institutismacing to provide the complete
solution which supports MDA and, more generally,ddbDriven Engineering (MDE)

[10].

At the earliest times of software modeling, mode¢se created as a part of a design task,
9

usually in the later stages of the process, aftguirements elicitation. MDE, however,
promotes models as the central artefacts, whictedhie development process. As
Forward and Lethbridge show in their survey [18pd®ling is not yet a universally
accepted approach to software development. For pemge, on the other hand, models
go beyond semi-formal graphical views of the sys&em include implementation code,
XML Document Type Definition (DTD) documents, anglathora of other artefacts.
This is particularly the case when working with MBE approach. It is easy to see how
the Umple language and Umple process fit into MDBple code is another artefact in
the system (another view of the system) which &lus derive multiple other artefacts,
including the implementation code (in Java). Ungada be used to derive UML
diagrams, or vice versa. For further informatiorarfee and Rumpe [19] provide an

overview of the current state of MDA.

2.2 Overview of UML

Unified Modeling Language (UML) is the most widelged graphical general purpose
modeling language. UML is based on the MetaObjeciliy (MOF). Both were

proposed by OMG, and UML has become the industnydztrd for modeling.

UML offers a wide range of diagrams which repreghfierent views of a system, and
spread across multiple domains. As such, its ugalsllargely dependant on the tools
one uses. As Forward and Lethbridge show in thewrey [18], over 50% of developers

found modeling tools poor or awful to use for bed@rming or prototyping. Both of these

10

tasks require quick results with many frequent geanwhich modeling tools do not

appear to support very well.

Even with the use of tools of good quality, largstems are difficult to model and
maintain due to the nature of these diagrams amdltiity to store a lot of information in
relatively small areas. Specific limitations of $kediagrams include the fact that
constraints and algorithmic code need to be expdessparately and textually. Another

limitation is that the links between diagrams dfterodifficult to trace.

Furthermore, there is no unifying standard whictldde used to produce working and
complete code directly from UML diagrams. This f&sin each tool using their own
standard which often leads to code that is diffitwread or understand, as well as
limited interoperability between code generationidoAs Forward’s research shows
[18], many tools have the ability to generate cdmle,developers have been found not to
like the code that is generated. Furthermore, ld@ighmic code has to be developed

separately from the code implementing the UML carcés

2.3 Subset of UML modeled through Umple

This thesis focuses on representing class diagusing a textual language. This work is
primarily done as a proof of concept, and the ne$es focused on the most common
type of diagram in use, which is the class diagtdanthe conclusions, we talk about ways

to extend Umple into other types of UML diagrams.

11

UML is very flexible and extendible which might ddbute to the complexity of the
language. Our intent in developing Umple is to eedthis complexity. The complexity
reduction arises from both the textual notatiotJofple, as well as limiting the range of
possibilities available in class diagrams, whil# sffering most of the power otherwise
available in UML. This concept can then be extentdeother parts of UML, beyond

Class diagrams.

2.4 Object Oriented programming paradigm

Object Oriented (OO) programming is a paradigm wleach type of entity is
represented as a class. Generalization relatiosisimong classes are specified, and
inheritance of properties occurs. UML extended @@yramming to include
relationships betweewbjects(instances of classes) represented abstractlysasiations
among classes. UML and OO programming are relatéoel way they treat objects,

however OO is a programming concept, whereas UMLgsaphical modelling notation.

2.5 Eclipse IDE

Eclipse is a popular, extendible, open-source nateg development platform (IDE),
which can be used to integrate new software iridhma of plug-ins. This makes it a good

tool for the introduction and prototyping of neveas.

12

The Eclipse IDE started as a proprietary projemtnfiBM, and later became part of the
open-source community; it is one of the most swsfaéspen-source projects in use
today. Due to its large user base and easy extktysiwvith much online support, Eclipse

was chosen as the delivery platform for most of Unspftware.

2.6 ANTLR Framework

ANother Tool for Language Recognition (ANTLR) iparser and lexer generator. This
means that given a BNF-like form of rules, it camoanatically generate code, which can
then parse an input stream based on those ruleELRNnjoys a wide audience due
partly to its history of success, but mostly duéhte fact that it is very easy to use with
great tool support (ANTLRWorks is a GUI ANTLR IDEheh supports syntax
highlighting, a debugging environment, etc). Thapplarity was heightened by the fact
that the author, Terence Parr, has written andighdd a reference guide for ANTLR as

a paperback book [3], which is rarely the caseriost open-source pieces of software.

Using ANTLR allows us to quickly and efficiently ahge the syntax of our language
and to add features we discover might be usefat®@necessary during the course of
research. This tool has proven itself very usefid eeliable, which allows for rapid

prototype development.

2.7 JET framework

Java Emitter Template (JET) is a component of ttigp&e Modeling Framework (EMF)

13

project. The JET framework takes a set of nestexqblees and generates an
implementation file from it. The templates worknggisubset of the JSP (Java Server
Pages) syntax, where the code within <%<code>%s itadirectly copied over to the
resulting file, and code outside of these is traesl into StringBuffer.append(...)
operations. Within each template one can call digvplates to create a template

hierarchy.

This is useful to Umple because it simplifies tbe&-generation process. Instead of
thinking about parts of generated code (such amg#tods of association variables) in
terms of classes, we can now follow a set of tetaplavhere we simply fill in bits and
pieces which produce the final result. JET is sergid quick to work with, so it was
used to generate some of the components of ouretenmplementations of Umple. The
JET files are compiled, resulting in an intermeeli@mponent, which is runnable Java
code. This runnable component is the one ultimatdponsible for generating system

implementations.

2.8 Rational Software Modeller

For Umple to become accepted and used by the seftevelopment community, we
had to provide at least a subset of standard fesnffered by other popular tools within
the Umple software. On the UML modeling side, theme many tools, proprietary and
open-source, which we can interface with to achteegunctionality level we are

striving for.

14

Through our partnership with IBM, we've gained asct their Rational Software family
of tools. These tools provide a wide range of cdpials, of which we only needed UML
modeling. The decision to use Rational Software &ed(RSM) over other similar or
open-source tools was two-fold:

* RSM has been tested through many applicationsltirggin a very mature and
relatively bug-free product.

* The second reason is more technical: when modeliagyraphical environment,
we are always concerned, and sometimes constrhinge layout [8]. When
looking at the possible tools which we could irded with the rest of Umple
software, only one we were able to use providestigy to automatically lay
out elements of diagrams. This meant that we ddvae¢ to spend extra
development time looking at graph theory and th@sing the right algorithm for
the task of laying out the diagrams.

These were the main reasons why we chose to inéegraple software with RSM.

However, extra care was taken to define and docutherinterfaces between the RSM
component and the rest of the software, in ordend&e it possible to simply replace the
RSM modeling package with another which conformth&ésame interfaces. This would
make it possible, for example, to open Umple todpen-source community. This is

currently not possible because RSM is proprietafinsare.

2.9 Other Textual Modeling Languages and Highlight s

We are not the first to propose a textual langusdetion to modeling tasks. This section

15

will discuss some of the well-known previous attésrgtt textual modeling, and give a

brief contrast between these and Umple.

2.9.1 Emfatic and ECore

Emfatic is the language and text editor which camged to describe an EMF model in a
textual modeling language, similar in some waydmaple [20]. It is using an Eclipse
Public Licence (EPL) and is freely available at Badipse Modeling Framework Tools

website.

EMF provides interoperability, code generation argkrsistence mechanism. EMF also
claims that the Ecore model is “essentially thesldiagram subset of UML"[23], with
only a few minor changes. However, these changesignificant enough to make Ecore
unfavourable for Umple. The major change of Econenvcompared to the UML class

diagram subset is the fact that Ecore does not Ass@ciation classes.

16

D
The Ecore (Meta) Model

« Ecore is EMF’s model of a model (metamodel)
— Persistent representation is XMl

eSuperTypes
0 EAthbutg eAttributeType EDataT\fpe
B aAttributes |name : String | name - String
EClass [T 0
name : String cReferences ERaference

g+ |name : String
h containment : boolean
eReferencelype lowerBound : int
uppeBound : int

eOpposite | 0.1

25 From Madels to Code with the Eclipse Modsling Framework | & 2005 by IBM; n_

Figure 3: ECore metamodel [23].

Emfatic is an Ecore tool, not a UML tool, whichvisible in the syntax. For example, in
order to create a working model, the user needpdcify nsURI in some of the

constructs, such as when declaring a data type; as

datatype EFeatureMapEntry : org.eclipse.emf.ecore.util. FeatureMap$Entry;

Emfatic is able to generate an Ecore model frontduke, or code from the Ecore model.
This model is then used as an interchange forntatdes other EMF tools. The main
disadvantage, besides its usability issues, istiigalanguage is based on the Ecore

metamodel, not UML. This metamodel is a very sraaliset of UML metamodel.

17

2.9.2 MOF Human-Usable Textual Notation

We have mentioned the MetaObject Facility (MORha UML section. MOF is used as
the metamodel for models, and would be considemadta-metamodel of any system

modeled using UML. As with UML, MOF is the work &MG.

The MOF specification includes the Human-UsabletiiaxNotation (HUTN) [13]. As

the name suggests, this is a textual (code) wapdaify instances of a MOF model,
which is used to complement the graphical way ahglthe same task. During the course
of our research, we have reviewed this tool tordatee what lessons could be learned

and to try to speculate as to how Umple couldHix mistakes made.

The first major difference between the Umple langguand the HUTN technology is that
HUTN is a way to generically generate languageayparsers, effectively generating
textual modeling languages based on a given mbdsked on MOF) and a configuration
specification. HUTN does not represent a singlgl@age, but the set of all languages
which could be generated given the above. Thisagmbr allows for any model specified
based on MOF to be accompanied with a textual iootatvhich is a very powerful idea.
When looking at the actual syntax of these genédareguages, however, we can right

away see issues which hinder the tool's usability.

As a simple illustration, let us look at an examipten the HUTN specification. This
example describes a family package metamodel,alagses Family, Person, Dog, Fish,

and Car and the relationships we might imagine betwhese entities. Figure 4 shows

18

the example as taken out of the specification [14].

Car
registration String
make:String

rowned | YE Integer
OWNES | Ltate:String
Dog
name:Siring CarOwnership
age:nt
breed:String § +awner
sex:enum(male, female) Family 7
familyName:String +family adeption
nuclear:Boolean
mugrants:Boolean
address:String naturalBirth
petDog:Dog +amily
Fish petFish:Fish (+sponsor
name:String
sexzenum(male, female) o
+amily2 sorship
)i A +naturalGhild
/ +amjly
™ +afloptedChild
i W
| familyFriendship
e —N

Person

name:String
age int
sex:enum(male. female)

Figure 4: Example of a family package as takenadUTN specification.

The example then goes on to show the correspondiigspecification for this example,
which will not be shown here. Lastly, the exampleeg the code in HUTN-generated

language which would use the model described aldeigare 5 shows some of this code.

19

FamilyPackage id-001 {

Family “The McDonalds® {
address: “7 Main Street”
migrants
familyFriends: “The Smiths"
petFish: female Fish “Wanda™;
petDog: “Spike”
CarOwnership: “755-BDL" {

state: QLD
make: “Mitsubishi Magna”
year: 1992
}
}

nuclear Family “The Smiths" {
address: “5 Main Street”
naturalChild: female Person “Joan Smith" {
age: 20

naturalChild: male Person “Harry Smith™ {
age: 17
}
adoptedChild: male Person “Dylan Smith" {
age: 12
}
familyFriends: “The McDonalds™
}
male Person “Namdou Ndiaye" {
age: &
}
male Person “Sharif Mbangwa" {
age: 3
}

male Person “Miguel Aranjuez” {
age: 2

Figure 5: HUTN code which takes advantage of timailfiapackage.

From the example we can quickly identify elemeritthe language which are difficult to
understand or justify, from the point of view ofisable textual modeling language. For
example, the need for FamilyPackage id seems unéleghermore, the structure of the
code is difficult to follow, and even more difficub quickly write, which is not the case
with Umple. This example helps illustrate the laage issues which hinder the tool's

usability.

20

It is also particularly important to note the driat levels of abstraction between the
HUTN code shown in Figure 5 and MOF model describegigure 4. HUTN-generated
languages can be used to initialize instancesaskels but cannot be used to describe the
model itself. This is done using MOF and only after model is created, using an HUTN
tool one generates a language based on that mMiddelis one of the major differences
between Umple, which is a textual language useddate a UML model specifications,

and HUTN language which is used to populate a M@Eeh

Lastly, HUTN is not used in practice today; thish@gps has more to do with UML than
with the tool. The formal specification for HUTN watroduced in August 2004, yet no
successful attempts have yet been made to cométlua MUTN specification for UML,
which is a child specification of MOF and shoulddide to be modeled using HUTN.
The probable cause of this is that the HUTN speatifon has to conform to the UML
metamodel, which is very extensive and complicaiée HUTN language generated
based on UML would then also be very difficult seuWe suspect that even if one tried
to only model the class diagrams, as is done inlentipe XMI-like structure of the
resulting language would make it much too diffidoltuse. One of the goals of using a
textual notation over a graphical one is that éxtual version should be easier and
quicker to use. These goals would simply not bewtetn using HUTN to model UML,

due to UML metamodel size and HUTN's generic nature

Overall, the HUTN notation provides an improvemewr writing XMl for the purpose

of describing instance. However, it is not as fioral nor as usable as it needs to be,

21

when comparing it to the standards set by otheulaomon-generic textual languages,
such as Java or C++. Added to this is the lackldA. HUTN specification, forcing the
users who do want to take advantage of HUTN tathséMOF, instead of UML. This

further hinders HUTN usability and popularity.

2.9.3 UML Action Semantics

As is discussed in detail in Section 5.3.9, evgstean requires a certain level of
application logic. This logic could operate on rplé layers of the system, ranging from
GUI logic to controller or even database layerdoffiML was historically very inept at
the expression of application logic, constraintangariants. The advent of OCL has
attempted to change this, but there were still gapsML practitioners’ ability to express

application logic.

The OMG proposed a solution to this problem, nakBtl. Action Semantics [29]. This
specification allows UML users to specify a divesse of actions that can be performed
on the elements described in UML diagrams. In thethis allows users to represent
logic within UML. However, this new specificatiomges some problems which hinder

its use and adaptation.

One of these problems is that the specificatidorign abstract syntax, relying on
concrete implementations. Over time, there have kegeral attempts at implementing

this concrete action language, the most notablehath are Object Action Language

22

(OAL), Java like Action Language (JAL) and ActioarBantics Language (ASL)[30].
These independent implementations introduced skeotrar problems, further inhibiting
the use of UML Action Semantics. For example, nohnese languages conform
completely to the UML standard. As is discusselaudius Heitz, et al. [28],
“Unfortunately, none of the existing action langeagan express all constructs of UML
Action Semantics directly.” Each tool chose a subs&ML Action Semantics which
resulted in lack of interoperability between to@dgature this UML standard (or indeed
any standard) hoped to provide. Another issue thighlanguages was that many were
proprietary, which limits adaptation by the gengnaifessional public. Lastly, all but one
of these languages (ASL) are unable to result 0%d.@enerated code. This means that
after specifying action semantics and generatisgstéem from the resulting models, one
would have to contribute code in the target languddis is a task Umple attempts to

omit completely.

As we mentioned, ASL is complete and allows one24@0dde generation. However,
there are several factors which make it difficolt fise in this project. The language itself
has been put into public domains but the only paraed production-quality interpreters
of this language are proprietary, and distributegart of iUML. This makes it
inappropriate to be used with core Umple softwahétvis intended to be open-source.
Furthermore, the ASL language is not mimeticallgnpatible with Umple or Java, which

would decrease Umple’s overall usability. Figuréhéws us a simple example.

23

Read a single attribute value (NB " John" must be unique).
johns_age = Person.age where name =" John"

Read two attributes at atime
[johns_agejohns_height] = Person.[age,He ght] where name =" John"

Example using an instance handle
Create new object and get handle...
new_person = create Person with name = new_name

Later ... Usetheinstance handleto access an attribute
new_age = new_person.age

Read a single attribute value (NB " John" must be unique).
johns_age = Per son.age where name =" John"

Read two attributes at atime
[johns_age,johns_height] = Person.[age,Height] where name =" John"

Example using an instance handle
Create new object and get handle...
new_person = create Person with name = new_name

Later ... Usetheinstance handleto access an attribute
new_age = new_person.age

Figure 6: ASL Example

As we can see right away, the language uses ditfstgle format and syntax, which is in
many ways quite dissimilar to Java and Umple. ThHias®rs combined led to the

decision to not use ASL to specify action semaritidhis project.

Another problem with UML Action Semantics is thatarding to Heitz’'s research
“UML Action Semantics that do not have a directalasunterpart”. Without a direct
translation from languages based on UML Action S#a to an OO language such as

Java, the use of this specification is very limigtdbest. Findings by Heitz were

24

reinforced by Clark, et al., in their review of pesises to an OMG Request for Proposal
[31]. This review also further questions the suligbof UML Action Semantics.
Because of these factors and shortcomings combiveedsere forced to not use UML
Action Semantics to specify application logic in ple and have instead used our own

solution, discussed in Section 5.3.9.

25

3 Research Questions

This chapter is a formal statement of the resequestions this thesis explores.

3.1 Abstraction jump in coding

As mentioned in the introduction, there exists@asation of levels of abstraction
between the implementation of the system and thdetaalescribing the system. The
first research question we will investigateR€)1: What are the advantages and
disadvantages of adding abstractions found in UMk lava-like programming

language?

3.2 Bridging gap between models and code

When changing the model of a system, the correspgrchplementation has to be
separately changed as well, unless a code gene&aomloyed, which is usually not the
case. Over time, minor changes are made to thelmdd®e not reflected back as

changes in the model, resulting in a gap betweemtplementation and model.

RQ2: How can we bridge the gap between model apteimentation, by making the
Umple code represent botfhe criteria of success in answering this questionld be
if the diagrams and models of a system and theeamehtation of that system are one

and the same.

26

3.3 Advantages of modeling using code

Graphical modeling research was started with tleeofislowcharts [1]. Much research
has gone into graphical modeling languages sinbstrAct ideas and features of software
systems have traditionally been shown graphic@ie most successful of these
graphical techniques is UML, discussed earliersThesis will look into another

direction of modeling — modeling using teRQ3: What are the advantages and
disadvantages of text-based modelivg@ intend to incorporate some of the best code

language practices into our text-based language.

3.4 Simplify and hasten development

Software development is an imperfect process wahyrpossible areas of improvement.
RQ4: To what extent does the Umple approach siyngifelopment? RQ5: To what

extent can the Umple approach speed development?

3.5 Simplify maintenance

Software systems evolve over time, and over mamrgtions. Traditionally, a change in
system would first have to be modeled and thenemphted by one or more developers.
This is a two-step approach to the problem of nemance. Unifying both the
implementation and modeling step could greatly $fsnmaintenance both in terms of
time and complexity as, once again, changes in groptle would result in immediate

corresponding changed in the UML models as wethasinderlying implementation of

27

the systemRQ6: To what extent can the Umple approach assiktmaintenance?

3.6 Separate programming language and modeling lan guage

As stated earlier, Umple is a text-based modeklmgliage. This new approach begs the
question: Why are we commonly using a programmamgliage separate from the
modeling languageRQ7: To what extent can we create a language thatlne full

power of both a programming and modelling languagesh that it would be sufficient in

order to produce a system?

28

4 The Umple solution

Umple is an effort to simplify the software deveaimgnt process. Our objective is that
Umple would speed up time-to-prototype and the @lV&éme-to-release. This is
accomplished through eliminating some of the safawevelopment activities, which are
often repeated, through automating these tasks.lé&impssentially a modeling
language, much like UML, combined with necessaeyngnts of a standard

programming language.

UML is a graphical language, offering a set of dsgags and notations to describe a
system. Umple is a text based language. One pegsibtess of designing a system
using Umple would be to sketch out classes in augdxenvironment, using very simple
and short constructs, and then have the Umple addtivanslate them into their
respective UML diagrams. From this point the desigran see both structure and code
for the system. The designer can now change theléJoggle to refactor the design or
change the corresponding UML diagrams. Howeverctiteent version of Umple
software only supports changing the Umple cod¢hieway, Umple helps facilitate

MDA.

UmpleCore is the translator for the code writtetdmple; it translates Umple to an
executable platform — currently Java, but possiédisuch as bytecode, machine code or
other high-level languages are also possible. Yhtag of Umple will be discussed in

Chapter 5. UmpleCore is made up of many comporveniish will be discussed in detail

29

in Chapter 6.

4.1 Increasing level of abstraction

The conceptual disconnection between modeling laggs and programming languages
originates from the fact that these work on sepdmatels of abstraction. When working
with UML, one is concerned with the high level iratetions within a system, or between
separate systems. This is also apparent from We¢ & formality of syntax of UML. For
example, if a parameter is not specified or is teditthe diagram often still contains
enough information to deduce enough about the ntodebke sense to the software
developer reading it. The syntax of UML allows &nission of information in favour of

not making the diagrams look overwhelming and ehirtg.

Programming languages, on the other hand, do ndttteallow omission of arbitrary
details, although there may be defaults for ceméments such as visibility (and some
languages lack types). The requirement for allideta be provided makes many
programming languages cluttered and verbose. Verang complex syntax often gives
greater control to the user and allows for more gx@w code, but it makes the code more

difficult to understand, maintain and debug.

It is then conceivable that a programming languageworks also at the level of
modeling language abstractions could share bergdflisth modeling and textual
programming languages, while eliminating some efdrawbacks of each. This would
be a textual language which takes advantage oflsimpntax, which assumes defaults

30

where not specified, as in UML. It would also conteonstructs found in UML, which

would result in the required increase in abstractio

4.2 Umple language

The Umple language is the text-based modeling laggueferred to throughout this
thesis. This language incorporates ideas and Iedeamed from many object-oriented

languages used in practice, as well as concepts EhlL.

Umple combines both modeling and OO principles.ths reason, Umple code should
in theory translate to any OO programming languéigavever, each target language
results in a slightly unique dialect of Umple, srtbe design of Umple focuses on
translating UML features to the target language passes through algorithmic code
without interpretation. The name Umple refers @ slgntax common to all dialects.
Derivative such as JUmple (with file extension .p)mepresents a specific syntax which
generates Java code, and expects algorithmic eternteehe written using Java-like
syntax and semantics. As part of this thesis, we la@fined this dialect of Umple,
leaving other potential dialects for future workh&ve a concept applies to the whole
Umple approach, the term Umple will be used. Iiybwer, a feature or a concept applies

only to JUmple, we will use this term.

The first observation we made was that every laggumeas to balance power and
simplicity. As stated in the HUNT specification |14the syntax of a language can have
a strong effect on the speed and efficiency aiises for an expert user, but the syntax

31

features associated with this speed and efficiefitey lead to a more difficult learning
curve for the novice user. While it is not impossito deal with both, a certain trade-off
between these two features is apparent in many @snprogramming languages.”
Because the focus of this research is to provsiengle solution to the complex task of
system development, some of the features and paéne target programming
language had to be limited; in other words standatdtions are chosen to certain
programming tasks, limiting the power of the pragnaer somewhat. Most particularly,
Umple takes care of generating essential targemiage code needed to implement high-
level concepts specified in Umple; this is oftefereed as “boilerplate” code, and is
discussed below. All systems, however, requireraitelevel of customization. This
customization comes mainly from algorithm and ani¢hic operations, often referred to

as application logic, performed by the system.

Most new languages and advances in the programiamggiages have simplified the
development process, allowing better efficienogxibility, or power to the user. Umple
Is a demonstration of how the next step can bentdidmple benefits from the
observation that much of the work developers ofesyis do can be simplified and

automated.

Boilerplate code is code which is necessary inogam to implement a certain concept
and is repeated many times. Classic examples #er gad setter methods in a class.
Such code does not hold much value when one isgitgi understand the behaviour or

architecture of the system. It can, and indeed nesteused in numerous similar

32

contexts, often without any need for alteratiorfgeothan simple variable substitutions.

Of particular interest in this thesis is boilerplabde for declaration of variables
representing associations and the methods neecettitand delete links of those
associations. Sometimes such code can be quiteleoniqut other than referring to
different variables, it is basically the same fibaasociations that have the same patterns

of multiplicity.

Another observation is that users do not takeddllantage of modeling tools. In
academia and most of the successful software caeganis agreed that modeling helps
to communicate most types of systems and simplifireferstanding of a system [24].
However, as discussed in the Section 1.1 theretmaeptual disconnection between
programming languages and modeling languages.Xeon@e, the idea of associations is
one of the major areas of study — what is an aa8oniin Java? In UML, the idea of
association is very well documented and describediever there is no explicit
association construct in Java, C++, C, PHP, etopldrmims to bridge the gap between
programming languages and modeling languagesptoda a “model-code duality”.
This of course brings many advantages:

« Use of models in software development

- Systems will be easier to understand because ceotssuch as associations or

design patterns will have a standard implementation
- There will not be a need to separately update desigl code because now the

design is the code is Umple, which can be autoaticendered as diagrams

33

describing the system. This, coupled with javadke-tlocumentation practices,

could greatly simplify and quicken this process.

Umple is an abstract idea which can be appliechyo@O language. This means that
components of the supporting software can be ihterged to work with or produce code
in Java, C++, C#, etc. For the purposes of thisishéowever, Java will be used as a
point of reference. Java is a widely used OO lagguashich makes it a good reference

point.

Models are vital to the Model Driven Developmenpiagach. Even though there are
many model transformation tools out there (JET, MDptimalJ, etc..), they are often
limited to allow the user to specify transformatraifes and carry out a transformation
operation based on these rules, and some othenptais. Umple assumes the
transformation rules, and lets the user focus @tispng the model of the system,
instead of how to transform it to executable cadeather words, using Umple we are
able to specify what is the system, instead of lwthie system constructed. By assuming
these transformation rules (Umple-to-UML and Umigelava), Umple standardizes the
implementation of a system, which could result in:

« Use of best practices uniformly among all develspErUmple makes a decision
about the best way to implement a pattern, for gartihe Proxy pattern, then all
systems created using Umple will behave the sanyengaulting in consistency,
and hence greater maintainability. Furthermoresfedts are found in how Umple

implements a concept, the fix can be applied aabsystems when they are

34

recompiled.

- Simplification of system through abstraction. Eveodern languages, such as
Java, result in the need to write boilerplate codgch has to be repeated many
times in various parts of the system. By elimingtiome of this boilerplate code,
Umple lets the user focus on the more importanttire (and in later stages of
Umple, also behaviour) of a system. Therefore, énngises the abstraction to the

level of UML.

4.3 Coding on the level of UML

Code in the current version of Umple is mainly cosgd of three types of constructs:
classes, associations, and association classese @irectly mirror what is immediately
visible in a UML Class diagram. In Umple, classesatibe the objects within a system,
associations describe the links between these tstijeat can or must exist at runtime,
and association classes are a combination of Bstin UML, classes in Umple can have
attributes and associations to other classes. Tdsssriations define multiplicities and

optional role names for each link between classes.

These features are directly extracted from UMLsT8fiows how coding in Umple is like
modeling in UML class diagrams. The user is ablthiok on the abstract level of UML

while writing code, which can instantly become ilmplementation of the system.

4.4 Coding and modeling as one task

Coding in Umple follows the same process as modahirJML. The key feature of

35

Umple is that it directly generates both UML diagsand system implementation. Any
change in JUmple code will result in immediate @esto the diagrams and generated

code. Umple unifies these tasks as one.

4.5 Modeling concepts within a programming languag e

Working with UML and Java, it became obvious thatt all modeling concepts are
incorporated into the OO paradigm. The ones omiitdicbe discussed in the next
section. Even though OO programming languages@&ebul enough to simulate the

ideas, there is no standardized way to do so.

Through Umple tools, we are able to standardizevidne modeling concepts are
implemented in a programming language. Some coscspth as classes, belong to both
modeling and OO domain. However, concepts suckess and associations do not. This

results in inconsistent, complex and often fautiges written from scratch each time.

4.5.1 Mapping code to modeling

Umple offers a standard way to implement conceptdNL that are not explicitly
present in pure OO programming. Each code-genertdi provides its own way of
implementing a set of specific concepts, and tieer® complete standard or reliable list
of sound practices. This results in the code ofséesn generated by tool A being
incompatible with code generated by tool B, andiiéieg “glue code” to bring these two

together. The result is that the same systems giueby multiple tools have different

36

properties in terms of cohesion, coupling, compieaf generated code, lines of code,

security, performance, etc.

Umple provides a possible set of standards thatjopted by other tools, could be used
interchangeably with other code generated by toased on UML. These standards are
based on lessons learned from other code genetatitsas well as original ideas

following the Umple methodology of simplicity andderstandability.

Mapping attributes

There is a direct mapping between UML class atteéband Java instance variables.
Umple translates an attribute declaration to ataiee variable and the standard Java get

and set methods, where appropriate.

Umple goes further, however, in generating codeclvichecks certain conditions before
interacting with attributes of a class or ensuangnvariant. For example, a case where
setters cannot be generated is when we declargrdnute as “immutable”. This means
an attribute can only be set once and must stayaime from then on. This setting is

done by supplying the value for the attribute i@ tonstructor of the generated class.

An example of condition-checking code generati@spnts itself when we use the

keyword “unique” to describe a class attribute mpJe. This is shown in Umple code

below.

37

class Flight{
/IRepresents the unique identifier
uni que flightlD;

}

Figure 7: Umple code snippet using “unique” keyword

The above snippet of code declares a class narngdd.Hhis class has an attribute
flightID which we state is unique. This corresponaigghly to the UML notion of a
‘qualifier and conceptually means that at no tishall any other class associated to
Flight have multiple objects of class Flight witretsame flightID. The code which
ensures this is always true is generated in thdigbtiD() method of Flight, which
contacts all of Flight's neighbours and makes theg do not already have a flightID

variable set with the given value.

In the simplest of cases, an attribute in an Urofaes simply translates to an instance
variable in a Java class. Umple, however, offerg sanple, quick, and easy-to-
understand ways to modify how attributes are hahdiel effect class interactions with

these attributes.

Mapping classes

Mapping between Umple classes and Java classasdidal in accordance with the
Umple methodology. Once again, there is a direqipimay between Umple classes and
Java classes. Each class construct in Umple cedé@ably becomes a class in Java.
Umple handles all tasks required to create a camplass, such as constructor

generation, import declarations, and so on.

38

Creating class hierarchies can be accomplished tisenkeyword “isA”. This syntax was
chosen as being synonymous with the “is-a” testclis often taught as a very simple

test to determine if a class is a subclass of anatlass.

Mapping associations

Most of the power of Umple comes from the way mdilas associations between classes.
At the very lowest level, a one-way associatiodawma is simply a variable in a class that
has the type of the other class. Umple associagorfar beyond this point, to translate

UML association concepts to Java. The followingwseful examples.

class Employee{
uni que ID;

association {
* Employee -- 1 Employee supervisor;
}

Figure 8: Reflexive association example.

class Fare{}
class City{
name;

association {
* Fare faresFrom -- 1 City fromCity;

association {
* Fare faresTo -- 1 City toCity;
}

Figure 9: Multiple associations between two classes

In Figure 8, we are given two classes and two @aoes between these classes. We
immediately notice concepts which are not direptigsent in Java. The first of these
concepts is multiplicity, which follows the UML stax. There are many ways to

program the behaviour of 1..* multiplicity in ansasiation, but Java does not offer a

39

standard or an explicit construct to support tleiscept. Much of the logic generated for
Umple associations is related to ensuring muliifgdis are respected. In the above
example:

e Multiplicity end 1 simply translates as an instaneeable in the opposing class
(the opposing class is the class where the 1 isamrwhen an association is
drawn in UML). Set and get methods are generatéacibtate access to this
variable. The object of the class needs to be ggpi the constructor to the
opposing class. This is to ensure that each instahthe opposing class at all
times has a link to an instance of this class.

e Multiplicity end 0..* translates to a set in thepoging class. Simple get(), set(),
add() and delete() methods are generated to mantgpthiis set.

e Multiplicity end n..m is a combination of the firsto types of multiplicities. A
list has to be passed to the constructor withastla elements. Add and delete
methods make sure the consequent interactionsthathist do not cause it to

decrease below the lower bound or increase abgver igound.

Next, we see the role name (toCity, fromCity andesuisor) in Figure 9 and Figure 8
respectively, which is a label put on an assoaiatiod in class diagrams. Role names
often simplify understanding of an association hsas in Figure 8, where we are
describing that each Employee has a supervisoe Rahes can also distinguish between
associations, such as in Figure 9, where a clasa fare to city and from the city. These

and similar cases have made it necessary for esteen to be part of Umple. The

35

translation using role names simply means thatbériname is declared using the role

name provided, instead of the class name.

As we've shown, the UML concept of association dagshave a trivial translation to
Java. However, such a translation is possible asthindardizable. Umple proposes one
such translation based on satisfying the functioe@lirements implied by the semantic
meaning of associations, as well as simplicity neguents imposed by the overall goal

of Umple.

4.6 Change of paradigm

Umple inevitably presents a change in paradigms €hange is necessary in order to
reach our goal of simplifying the development psscéJnlike many other revolutionary
ideas, which in the past required a radical chamdpoth the way developers think and
what they do, the paradigm proposed through Unspiedre of a merge between the

modeling and programming paradigms.

4.7 Coding becomes modeling

As we suggest throughout this thesis, Umple cobdegpmes UML modeling. In its
current stages, this modeling is limited to clasgams, but ideas on how to further this

research will be given in the conclusions chapter.

By bringing UML concepts and ideas to a programntamgguage, we have created a

36

bridge between creating a model of a system, aptemmenting that system. Even more
so, we have introduced a way to complete eachféessér, both in terms of time to create

and time to understand and maintain.

This is a potentially key improvement in the pageliof software development, while
not requiring great amount of new knowledge ora paradigm to be absorbed by the
developer. We have reused the semantics and ideasbth modeling and
programming paradigms, allowing someone who istigeltly able to quickly learn to

use and work with Umple.

4.8 Model change over time

As modeling and programming become a single tasketis no need for separately
updating a class model and the underlying impleatent code due to change in the

requirements or for any other reason.

System change over time is inevitable. Systemsveviobm the first day of development
to the last day before decommissioning. Therefeadidg with these changes quickly,
efficiently, and keeping the related models in getrSynchronization is a significant

advantage of Umple.

4.9 Generated system as black box

In order to preserve the concept of working styietl a high level of abstraction, we

37

needed to pay close attention to the generatedmyistterms of simplicity of the code,
coding standards and best practices, and the wajsaneant to interact with our
generated system. As Forward and Lethbridge determitheir survey [18], developers
look for code generation in their tools but mostifthe generated code very cryptic and

difficult to work with. This is an area where Umpman make significant improvements.

An Umple system needs to have a complete set ofiturality. It needs to provide all the
functional and non-functional features requiredhmsy customer. This can be
accomplished using the syntax provided by JUmpiaplé systems behave as a black
box, by providing a set standard API to interadhwhe system, and a clearly defined
point of contact. The developer simply needs taware of the JUmple code which
describes structure, interactions, and applicdbgit, and the developer can simply plug
this Umple generated system into an existing onepmbine it with another Umple

generated system.

Umple incorporates a few features to help accomphis goal. The first of these is the
ability to separate code into namespaces. A narnespa logical grouping of classes
which relate to a common domain. Separating youpldrnode with namespace
declarations translates to each class declaredaaftemespace declaration being put in
the package with the specified name. This formepisation of concerns helps facilitate
understanding of both Umple code and the underlgodg, where package structure

contains information about the organization of code

38

Another feature that helps developers treat Umeteetated code as a black box is the
generation of a Facade class. This is an exampleeofidely used and very useful
Facade design pattern, which states that one sipoodite a point-of-entry class which
handles interacting with a system. This is a stethgeactice for any system, whether
generated or manually created, and so it was assanefeature of Umple-generated

systems.

The Facade mechanics are fairly restrictive. Adi@aggan never return an object whose
type is a class specified in the Umple code sixt¢ereal code would not know about the
generated classes. The only types of return valnesan expect the Facade to return are
Strings, JSONODbjects (will be discussed in few gaaphs) and primitive data types.
Primitive data types include int, double, and BaaleThis was done deliberately to
decrease the coupling between an Umple-generaséeinsyand another layer or system
that might use it. For example, an outer systenmhtnigant to call a getRegularFlight()
method from our Airline example (see Appendix 2glass called Airline. To do this, the
system has to go through the Facade class, bueshéting return is not the

RegularFlight object, but instead a unique idegtti6f that object, relative to the system.
This unique identifier is different then the attrib declared as “unique”, which was
discussed earlier. A unique identifier is assigttedach object created within our Umple-
generated system, and is stored indystem registrgollection. This identifier is then

removed from the registry when an object is deleted

This registry class is also automatically generatid each system. It is implemented as

39

a simple hash table (using the Java Map interfé&@@ade and registry work closely
together because most calls to a Facade methodteegcontext, which is the unique 1D

of an object we are accessing.

Another feature of the Facade class implementagidimat when asked to return a list, for
example a list of all the RegularFlights associatétl an Airline, it returns an iterator to
the list of the ID's of each object making up thigioal list. This serves two purposes.
The first purpose is to, once again, adhere tetfvapsulation of our system. The second
is to return as little information as necessary.UAnple-generated system is meant to be
usable in any application, including local or reedf our system is invoked remotely,
using for example RPC or as a Web Service, retgraiwhole list could negatively

affect the performance very quickly. This is whyadl for a list to the Facade in an
Umple-generated system returns an iterator toishefl ID's making up the underlying

list.

Lastly, to simplify interacting with the systemetkacade class provides two versions of
each method that would return an ID of an objeicstfFas stated, is an implementation
which returns the ID. Second is an implementatibictvreturns the ID as well as the
values of all of this object's visible fields invd&cript Object Notation [2] (JSON). This
is done using the string representation of the JSK)t transfer object open-source
implementation. Returning a transfer object is dmneinimize interaction on a scenario
where an outer object, such as a GUI, wants tdayisgll available information, or a

subset of that information, about an object. Withmur transfer object approach, the GUI

40

layer would need to make numerous calls to thed&chass, which is a performance
issue. This way, however, the GUI can simply caimgle get-type method if just a
single attribute is required, or else a singletgpe method that returns the whole

attribute content of an object.

Interacting with an Umple generated system is nasdgimple as possible, while
respecting restrictions that result in good sofeyaractice and design. The generated
system is treated as a black box because evenhihdmgle is created to allow as much
power as is available in the underlying langualgerd are many systems developed on
constant basis with these languages. Insteadiaftty replace them all, Umple
complements them with the interfaces it providetheagenerated code, but also offers
many advantages to development of new systemsnaithiple instead of the traditional

medium.

41

5 Umple Language

As mentioned before, the aim of this research géwide means of simplifying software
development. Our solution that allows us to do that new language which combines
terminology and ideas from both OO programming legges and the graphical modeling
language UML. If we hope to achieve the stated,gealneed to present a language that
is simple to understand in terms of both syntax serdantics, yet powerful enough to

allow for the construction of systems of an arbitrsize and complexity.

When coming up with the language, we used UML asafrour main sources of

inspiration. This is because we feel syntax based graphical language is more intuitive
and quicker to understand than syntax mostly basgatogramming languages. After all,
many would argue that the underlying programmimgieage we use (Java) is already a

very clean and simple language to understand.

As is shown in a usability study of UML [4], uses@w it as easy-to-use. This is a
desirable feature of Umple as well. What was irgieng and perhaps counter-intuitive,
however, is that users did not see the UML diagrasnsasy-to-use. For example, the
study states that when rating class diagrams, genmating given to these was 4.295 out
of possible 7 with a standard deviation as 0.6 s Tesult is strong evidence that
developers see the advantages and positives wisinig UML, but find the particular

diagrams difficult to use, which leaves much ro@mifmprovement.

42

Furthermore, the study identified features thatetigyers found easy to use and features
that they had problems with. To us, this meansweashould follow the way the easy-to-
use features are done in class diagrams and peamiagent or simply just improve on
the way the problematic features are done. Itss adteresting to note that some of the
frustrating parts of diagrams will be inherentlypraved when one uses textual
representations, as Umple does, instead of the gidphical notation. The study does
not state how to improve these diagrams or whagldeers thought might be possible
improvements, but we believe we can attempt tohiese issues through careful analysis

and iterative comparisons of Umple features.

5.1 Main Concepts

The main idea which makes writing Umple simpleoisiéscribe what one could see on
the UML diagram counterpart in as few words as ipessvhile taking advantage of
default values, or assumed semantics (see Tabléik)is a uniform concept, which can
be applied when writing Umple of any diagram, nut jclass diagrams. This is
important, as Umple shows large potential scopevantherefore cannot and should not
confine it to simply class diagrams. A sectionha tonclusions chapter will discuss our
thoughts and ideas on furthering Umple into otteybar UML diagram types.

Context Assumption

variables |- assumes String type if not specified
- providing a default value removes it from constructor
sighature. This value can be set using its accessor

method, but is no longer required to be set by the

43

constructor

- if not specified, variables will have both a set() and
get() method

- if the "immutable" keyword is used, variable will be
read-only, and will need to be set in constructor unless
default value is given

- variables are assumed to be settable. Explicitly
specifying a variable as "settable" has the same effect

as leaving it out.

- variables set as "internal" are considered private

role names

- if not given, role name is assumed to be the class
name in lower case
- if not given, singular will be used for single object,

plural for a set

namespace

- if not given, name of file is used as namespace

- first namespace specified is the container of registry
and facade class

- each class belongs to the last namespace specified

before the class declaration

association

sets

- treated as lists

- implemented as array lists

- if the class which is to be content of a set representing
multiplicity has "unique” identifier, then this set is

implemented as hash table with that id as key

inheritance

- multiple inheritance is not supported

44

- isA declaration has higher priority than implicit
inheritance declaration

- last isA declaration determines final inheritance
structure. If multiple isA rules are declared within the

same class, only the last one will be implemented.

Table 1: Some of the most common Umple defaulteassumptions.

Another important concept not just in Umple bualhOO is separation of concerns [5].
This states that concerns which are conceptudiigrdnt should be dealt with in
different components, with as little functional dep as possible. Using this approach
allows one to focus on one particular aspect gfséesn at a time, without the need to
conceptually understand all details of the reshefsystem because, as Dijkstra notes
[22], from one aspect's point of view, the othersiaelevant. Umple facilitates
separation of concern in many ways, allowing treakdown of even the most complex
of systems, which will be discussed in Section$.Bollowing this principle is a
standard OO practice, but it needs to be handlddaeare. Even though conceptually
separation of concern allows us to understand lougl@ system quicker, the way in
which one can do separation of concerns must belsiand consistent. In other words,
allowing for too many different ways to specify aegtion of concerns may cause our
code to become confusing because it is then diffiotsee the “big picture”, which is the

overall system or its higher level structure.

Frederic Richard and Henry F. Ledgard [16] stati@ir work that “distinct features
should have distinct forms”. Furthermore, Mclved&@onway [17] refer to multiple

forms for the same features as syntactic homonyims.Umple language minimizes

45

these while offering a few syntactic homonyms alaiity clear rules for use in order to

improve cohesion in the Umple code.

5.2 When to start using Umple

When keeping in mind that Umple can be used aslgimmpode representation of a class
diagram, modeling with Umple becomes quick and ¢adgarn. We start writing Umple
the same way we start drawing a class diagram.doasn't simply jump in and start
drawing boxes and associations between them, ualesfirst has a conceptual view of
the entities and their relationships within thisteyn. This is the case with Umple as well.
This is another advantage of Umple — because dislé@self very well to and mimics the
process of creating diagrams (even though it iedextually instead of graphically), and
it does not call for a drastic change of procesgleyed by a development team. If one
wishes to use Umple as part of the software lifegytbe time to introduce and start
writing in Umple is the same time that team woudddn created UML diagrams. This is
almost exclusively at the beginning of the develephiifecycle, with changes to these
models as the development progresses. This wayweeary easily identify the
appropriate time to use Umple. The transition fjgume UML form of models used by a
development team to an Umple form of models (wigeherates UML models) should

be quick and intuitive.

5.3 Features of Umple

After we identify when is the appropriate time tarswriting Umple, we can then look at

46

the actual features of this language and how thieyact with one another. The features
of the language in this context refer to languamgestructs, their meanings, and the
particular concrete syntax that comprises Umple fiiéethe simplest way to explain
Umple is to constantly relate it to UML. To viewetiwhole syntax of Umple, please

consult Appendix 1.

5.3.1 Hello World Umple

Classes and associations are the basic buildir®laf UML Class diagrams and we
will start with simple representation of these imple. As in UML, the most basic and
minimalistic class is one with just a declared natherefore Umple as well allows for

such basic class with the declaration shown infeigu.

class Airline{}

Figure 10: Hello World Umple example.

This very simple line of code accomplishes exasthyat was described above, which is a
minimalistic class with a name (see Appendix 2t complete version of the Airline
example). In this case, the name of the classri;Ai When building class models, we
most often think of the entities within a systehrert their relationships, and then
iteratively fill in the more detailed features suahmultiplicities of associations,
attributes, or operations. This is also the way minght want to write Umple, where we
first brainstorm all the entities and possible cbfasses of the system, quickly throw

them into the model with simple constructs as we @ove, and then iteratively fill in

47

bits and pieces as they are discovered.

The syntax used to describe a class is as follows:

classStruct ‘class' IDENTIFIER '{' (classltem)* '}'
classltem

: iSARule

| varDecRule

| singletonRule
| implicitAssociationDeclaration

5.3.2 Class attributes

Each class in Umple can have its own set of atieof a certain data type. Umple limits
the number of possible data types to Integer, Gtffoat, Double, Boolean, Date and
Time. We believe these are enough to convey the kias of class attributes one might

wish to use.

Date and Time are in fact objects in the underlyinglementation but are used by
Umple as primitive data types. This is done becadisike observation that many real
systems take advantage of some time or date furadtip, and we felt adding support for

these natively simplifies and minimizes some ofwluek required by the developer.

Data may also be declared as “immutable”. Immutéblds are ones which can only be
set once, and never again. If a default valueasiged for an immutable variable, then

only a getter method is generated for this fieklisTis done in the following example:

48

class Elevator{
immutable String prefixID = “QW 127;
}

Figure 11: Elevator class with immutable attribute.

This will create a field called prefixID in the Eigtor class which has a default value and
getter method. Declaring a field immutable withepécifying a default value will mean
the value has to be provided in the constructahisfobject, and as before, can never be

changed again after.

Umple tries to simplify and speed up coding in maays. One of these is that when the
type of a field is not given, it is simply assunibi field is of type String. UML supports
supplying this form of incomplete information besauit often still conveys the
information necessary for understanding the intdrfdaction of a class, and this has
caused it to appear in Umple as well. We couldgeotid of types altogether and use
type inference to fill in types of fields, becaubat technique requires observing how
variables are used to determine the type of a bariddowever, it is Umple that dictates
how a variable is used because it is Umple tha¢igees the code that interacts with
these data types. This puts an upper bound on haosir rvork we can simplify for the
user. Only having to specify the type of a fieléigery attractive trade-off for the ability

to generate intelligent code that interacts wiik field.

Variable scope can be controlled with the “settabtel “internal” keywords. A variable
is assumed to be “settable” by default, which metoan be read-write accessed by

anyone with access to the containing object. Végmteclared as “internal” are treated

49

the same way private variables are in OO, with dnéyclass able to access and change

these.

An additional feature available in Umple is theliéypio declare fields as “autoUnique”.
Auto-unique fields are unique in each instancénefdlass. The code ensures that only
one static master-variable is used and each ndanice of the class is assigned the new
incremented value of the static variable. Thisseful for attributes such as ID, which

need to be unique in each instance of a class.

The syntax dealing with variables in Umple is:
varDecRule : regVarDec | autoVarDec

regVarDec : (uniqueDec)?(attributeModifier)? (attributeType)? IDENTIFIER
(EQUALS value)? *;

uniqueDec : ‘unique’
attributeModifier : 'immutable’|'settable’|'internal’
autoVarDec :'autoUnique' IDENTIFIER *;

attributeType : 'String’|'Time'|'Integer’|'Float'|'Date’|'Double’|'Boolean’

5.3.3 Class Relationships - Hierarchies

The UML usability study [4] mentioned previouslyuftd that class relationships are both
a likable and frustrating part of UML. Umple gives the opportunity to improve the
understanding of these in a model. Umple allowy &1 single inheritance, as is done in
OO languages like Java.

50

There are two ways to declare hierarchical relatigps in Umple. The choice between
the two could be based on the separation of corprémniple, or simple user/team

preference. Assuming we are modeling a hierarché@ationship between parent class
Person and its two child classes Student and Tedech®O terms, this means that both

Student and Teachers inherit some features antibreships of Person.

The first way is to declare this relationship egjply, using the “isA” construct. This

would result in a form of code as follows:

class Person{}
class Student{
isSA Person;

class Teacher{
isA Person;
}

Figure 12: Inheritance example using isA keyword.

The choice of using “isA” as a keyword for expligitleclaring inheritance comes from
the “isa” test. This is a rule which is used a®artstic to conceptually check the
correctness of inheritance hierarchies. Becauskstiieule is a fairly standard teaching
tool when explaining inheritance in OO, it seerke ljood choice for a keyword in

Umple.

There is another way to specify inheritance in Usnpthich we call implicit declaration.
If working with the same example from the explgclaration section, we would write

the Umple code as

51

class Person{
class Student{}
class Teacher{}

}

Figure 13: Inheritance example using implicit inltance declaration.

This code behaves the same way the earlier vedsies. If we wish to declare another
level of inheritance, for example, to say that @adsnt class can also have a
HonourRollStudent child, we would simply insert theclaration of that class into
Student, and keep going in a recursive fashionhacsion has a set of advantages and
disadvantages which determine when one might upkditnor explicit inheritance

declarations.

One of the advantages of the explicit form is thextause it explicitly states the 'isA’
keyword, it might be little more readable and idfeaitle as a child of class Parent.
Another advantage is that if we are adding a dlagise system which is a part of some
inheritance hierarchy, we can simply declare ascéasbeing a child of another class
already declared in the system, instead of alteziigting code, which we might not have

access to.

On the other hand, an advantage of the implicitastation is that it is less verbose, more
compact representation, and it allows us to vergldyidentify all the children of a
class, or the parent of class. It also helps treese the cohesion of our Umple code,
because we are keeping classes conceptually rédgtad inheritance hierarchy together.
Cohesion is a combination of separation of concanusbringing similar things together,

and general good organization for understandability

52

The advantages of the implicit inheritance decianabecome more apparent when we
are dealing with larger inheritance hierarchies| &e would like to visually query the
system. This is done very easily in UML, where irealiagram one can immediately see
the way classes are structured. Explicit declamatiould require the user to jump all
around possibly multiple Umple files (file extensiamp), or to search through the same
file. Implicit declaration mimics the locality ofl&s diagram inheritance hierarchies
which might make large inheritance hierarchies meeslable and understandable in

Umple.

The syntax dealing with hierarchies in Umple isad®ws:

classStruct: ‘class' IDENTIFIER '{' (classContent)* '}’

/I Class declared inside another class — implicit declaration

classContent : classltem | classStruct | appLogic

/I Using the isA rule — explicit declaration

classltem: isARule | varDecRule | singletonRule | implicitAssociationDeclaration;

5.3.4 Class Relationships - Associations

Another concept for a construct which describegéfationship between classes in UML
is an association. Associations also appear in @nfdsociations declare that instances

of one class will have references to instancesofteer class.

53

Associations were among the top most frustratiaguies ranked by users in [4]. This
gives us an opportunity to introduce an improventetdmple over the underlying
language, UML. Associations are not an expliciigture of our OO language, Java,

which already makes Umple associations an impronémeer Java.

An association is more than simply a referencedlass from within another (or possibly
the same) class. Associations also offer an acoauntechanism in the form of
multiplicities and association constraints to lregtepress the relationships between

objects.

Once again, there is an explicit and implicit wayleclare associations in Umple. The

advantages of each once again dictate the use.

Let us imagine a simple Airline example, wheredhéy entities present are an Airline,
Employees and Planes (similar to the full Airlinemple in Appendix 2). One possible

Umple representation of this system could be

class Airline{}
class Employee{}
class Plane{}

association {
1 Airline -- 1..* Employee workers;
}

association {
1 Airline -- * Plane;

Figure 14: Explicit association declaration example

This piece of Umple code declares three classesioned earlier, and two associations.
The first association is between the Airline andptoyee classes. This association states

54

that an airline has at least one employee, and @dtlese employees only belongs to one
airline. The second association works similarlytte first, but the lower bound on
number of planes an airline can have is zero. Asrdimature we can see is the role name

declaration “workers”. This has the same semauisca role name in UML.

The implicit way of declaring associations is sorhatwsimilar to the way implicit
declaration was done for inheritance. To express#me relationships using the implicit

declaration style, we might write something like fbllowing:

class Airline{

1 - 1.* Employee workers;
1 -- * Plane;

}
class Employee {}
class Plane {}

Figure 15: Implicit association declaration example

Once again, this piece of code behaves the samasvéne explicit version. We can see
similarities between the implicit inheritance deatéon and implicit association

declaration.

As was the case before, each style of declaringcagfons presents its own set of pros
and cons. We have found that most of the time, kewéhese two styles should be used
in conjunction with one another, to help presehegeparation of concerns principle,
increase cohesion and decrease coupling. One pogsly to organize a system like this
is to group all of the operational entities (flighairline, employees), accounting entities
(frequent flier points, fares), and possibly detail actual flights (flight legs, actual

instances of regularly schedule flights). If weuass this is how we choose to separate

55

our system, then we can declare associations betelesses within each subsystem
implicitly, such that each subsystem does not kabaut any of the other parts, and then
declare associations between classes from diffstdrgystems using the explicit
declaration style. In this way, we accomplish velsan separation between each of the
components, and we can quickly observe the exawctgof coupling between each
subsystem, because those are the associationsve@lbstracted and declared them
explicitly. Appendix 3 on the accompanying websit@ws full code for many of Umple

test examples.

The way we declare multiplicities in Umple is vesiynilar to the way we declare them in
UML. This notation is fairly easy to understanddgorted quickly and easily to Umple.
The underlying generated system code ensures boesdae respected, and that we
generate the appropriate interface classes (fanpbe it would be incorrect to generate
an addAirline() method in Plane class, becausett@n only be one airline associated to

each plane).

To declare that an association is one way onlyningahat one class knows of the other
but that one does not know of the first, can alsadne in Umple. To do this using the

explicit declaration, we simply add the “->" constt, as in

association {
1 Airline -> * Plane;
}

Figure 16: Explicit association directionality exala.

This states that an Airline has a one-way associat Plane, and Plane does not have an

56

association back to Airline. The Airline end withultplicity one is simply conceptual,
and is not enforceable by code, because Planendbésmve a variable of type Airline in
the generated system. This is, however, a feafuddh. and so it was also put into

Umple.

To accomplish the same behaviour using the implietlaration style, one might write

something like:

class Airline{
1 -> * Plane;

class Plane {}

Figure 17: Implicit association directionality exahe.

This, once again, declares that Airline has a oag-association to Plane, with zero as
lower bound and no upper bound. The notation of-thewas used to mimic the way a
one-way association looks in a class diagram. We hlready seen “--” which is a two

way association.

It is also possible to declare a reflexive assamatA reflexive association is one of
which both ends end in the same class. These atisociypes are very common. If we
wish to model in Umple a class Employee, in whiablteemployee has a set of zero or

more subordinates, and one supervisor, we migtéwadamething as the following:

class Employee{
* - 0.1 Employee supervisor;

}

Figure 18: Reflexive association example.

The only syntactical difference between a reflexagsociation and a regular one is that a

57

role name must be provided. This can be usefulécumentation purposes, but is also
syntactically necessary, because without the rateas we would not be able to

distinguish multiple reflexive associations frontleather.

The Umple syntax dealing with associations is devis:

langStruct : classStruct | associationClass |association
classStruct : ‘class' IDENTIFIER '{' (classltem)* '}

classltem: isARule
| varDecRule
| singletonRule
| implicitAssociationDeclaration

implicitAssociationDeclaration : multiplicity implicitAssociationDirectionality
multiplicity IDENTIFIER (IDENTIFIER)? ‘)

implicitAssociationDirectionality : ('--'|'->")
association :'association’ '{' (associationltem)* '}’
associationltem: associationLine

associationLine : multiplicity IDENTIFIER (IDENTIFIER)?
implicitAssociationDirectionality multiplicity IDENTIFIER (IDENTIFIER)? *;’

multiplicity: (NUMBER (.."(NUMBER | "*))?) | **

roleName: IDENTIFIER

This syntax describes both implicit and explics@sations. At the high level, one can
declare a class, an association class or an ageacia class can contain an implicit
association declaration, the syntax of which ig/\semilar to the higher level counterpart,
with the exception of the first identifier, whick @mitted in the implicit version. The
name of the class in which this inline associatsodeclared is assumed to be the

identifier value.

58

5.3.5 Umple Separation of Concerns

We have already introduced a few ways in which Wnip@lps to promote separation of
concerns: grouping classes working in the samedsatain together, explicitly or
implicitly declaring associations depending on vieetthe association is intra- or inter-

component, or implicit vs. explicit class hieraehi Another way is to use namespaces.

Namespaces are declared using a line “namespaceespace name>" in an .ump file.
Namespaces separate the code into logical commraent in the case of Java they are
separated into packages. Umple automatically te&essof including all necessary
packages in the generated code so the user itofeeate as many namespaces and

divide the system into as many components as isedesith minimal work.

The Facade and registry class are placed in thefwst namespace declared. If no
namespaces are declared at all, then a defaulagaciame is used, which is the name of
the first Umple file read. A class declared in Umpbde is placed in the namespace
defined by the latest preceding namespace dedardtiis sometimes desirable to
separate out the facade and registry classes ctatyplleom the rest of the generated

code, which could be done by using the followindeo

/[Facade and Registry will be in PackageA
namespace PackageA
namespace PackageB
class SomeClass{
/[This class would be in package PackageB

;o

Figure 19: Namespace example.

This simple trick lets us completely separate batentry point classes of the system

59

generated by Umple. Without the first namespacéad&on, both SomeClass and the

facade class would be put in the PackageB.

Another way to use separation of concerns is tarseép the different components on the
level of Umple files. One can declare a subsysteim package PackA in a file called
SubsystemA.ump, and another self contained sulmyBtie package PackB in a file
called SubsystemB.ump. The associations betwese tha systems (essentially what
some might refer to as glue code) can be declamgarately, or within one of the two,
but in a different namespace. The user has a liseeflom in the way the separate their

system.

When we combine all of these mechanisms to clesharate components, we allow the
user to increase cohesion of both of the Umple emdkthe resulting generated code, as
well as decrease coupling by abstracting out tte-component associations. When
these mechanisms are used sensibly and with satinchse engineering practices in
mind, the systems one creates should be much ¢asiaderstand, manage, adapt and

alter.

The syntax for namespace declarations is as follows
item: langStruct | namespaceDecl

namespaceDecl : 'namespace’' namespaceExpr
namespaceExpr : IDENTIFIER('." IDENTIFIER)*

langStruct : classStruct | associationClass |association

60

A namespace declaration is at the highest leveraslass and association declarations.

A namespace expression can contain dots, as fan@gaumple.cruise” namespace.

5.3.6 Application Logic

Application logic in this context refers to any tars programming-language code that
cannot be generated. Umple allows the user to fyptes logic in Java-like syntax. This
is only a subset of possible Java, however, simopleldoes not allow manipulating of

arbitrary objects within the application logic.

This logic can be either inline (specified withiretclasses in .ump files) or extracted
separately in .jump files. Which of these methadgsed is determined by how much
logic is required. A rule of thumb could be thaaify more than a small number (e.g. 15)

lines of code are required then use the externglaode otherwise use the inline method.

At the present time, application logic is useddoch elements as constraints (invariants,
precondition checking, etc.) and algorithms of wasi kinds. As Umple develops to
incorporate states the need for application logausd decrease. The exact form of the
logic is also expected to evolve, as it is antitggao make some of it consistent with,

and drivable to and from OCL, as is touched oreitien 7.2.1.

61

5.3.7 Design Patterns in Umple

Umple lends itself well to incorporation with desigatterns. Design patterns are proven
modeling structures which offer a solution to acsfietype of problem. Currently, there

are two native patterns incorporated into Umple.

The first pattern is the Singleton pattern. Thitgra ensures that there is only one
instance of a class which is declared to be aeiagl In Umple, this is declared using an
optional expression “singleton;” in the declaratadra class. This will ensure the code

which ensures this task is generated in the cleskued as singleton.

The second important pattern employed by UmpleesRacade pattern. This pattern
dictates that there is a class used as an entny faoihe rest of the system. This pattern
was already discussed in section 4.1.9. Umple g¢e®ern Fagade class automatically for

any system compiled.

Umple provides the opportunity to incorporate mather design patterns, to both make
them easier to use in common practice, and edtastiismdard ways these patterns are

implemented.

62

6 Umple Software

In order to test the powers and limits of Umple,veed a tool which is up to par in terms

of quality and current standards put forth by otieets which attempt to make software

development easier. There were several tools deedltor this project, both to facilitate

development using Umple and testing the final gateer system. The following is a

component diagram showing the abstract dependeotctee 4 major components of

Umple.

= «UmpleRSM::

LML tool wrapped

around UmpleCore
HCOMmponents
= lUmpleRSM™M

| SE
“Components
= lUmpleCore
= «UmpleCores

Lmple compiler and
code generator

= «LUmplepads

Combines UmnpleCore and
Runtime in standalone RCP

“COmponents:
= lUmplepad

wlj5E RN =1

“Component s
= |Runtime

=1 «Runtimes

Reflection based
testing tool

Figure 20: Umple Software components.

Most of Umple software facilitates model transfotima. If we define a model to be on a

higher level of abstraction above an implementatiben Umple code is a model of the

system in Umple which is then transformed usingtdim In this case, the transformation

is two fold — includes both model-to-model trangfation from Umple to UML and

63

model-to-text transformation from Umple to codeeThles of each transformation stem
from the Umple methodology, and the attributesamhetransformation are specified in

Umple code.

6.1 UmpleCore

This is the major piece of software of the Umplejgct. All of the other software
components of the Umple project tie-in with or tlie component in some way.
UmpleCore is an Eclipse plug-in. The architecturthis plug-in was originally very
monolithic with a hand-written parser and interpreT his has evolved to a very
component-oriented design allowing for quick lozatl changes. Figure 21 shows a very

high-level organization of this plug-in.

I UmpleCore
“Components “Components “Components
< Jumple Compiler “User - Z]ANTLR Parser | “Y*%” = lumple Metamodel
|52
|| 5EE
“COMmponents “COMmponents
= |Java Code Generator - Other Plug-in
Based on JET ':INecessar'r Code

generated code.

Figure 21: UmpleCore high-level overview.

UmpleCore is responsible for parsing Umple codeation of a model according to the

64

contents of that code, and generating the systestementation.

6.1.1 Umple Metamodel

It is important to note the Umple metamodel. Thetamodel has similarities to the
aspects of the UML metamodel that deal with claggrdms. There are minor changes
related to the associations between classes idritie metamodel; however, all the
classes of the Umple metamodel (classes whichraeged as a result of system specified
in .ump code) hail from UML metamodel. This is amportant feature of Umple. Umple
aims to bring a modeling approach into developmantrder to breach the practical and
theoretical gaps between modeling and coding. @ulamguages don’t lend themselves
well to this goal, which is why there is a needonple. There are many existing
metamodels we could reuse in Umple software, bunlgea separate metamodel related
to UML allows us greater control and ability to exinent.

=] umpleElment
name

= umplevariable ~drves *] UmpleAssodiation
type
deiﬁm + | E umpleClass
Yale parentClassMame 2
packageName
isRoot
1 isSingleton oL

= umpleAssociationClass

1 1
£ Uniqueldentifier £ AttributeVariable

isAutounique

2

| UmpleAssociationEnd

rminimum
maximum
roleName
modifisr

0.1

Figure 22: UmpleCore metamodel.

One such metamodel could have been the Ecore methmioEMF, which we

65

introduced in section 2.9.1. Section 2.9.1 dessribmfatic in the context of EMF and
Ecore. The discussion which follows here is a dismn of Ecore and its accompanying

advantages versus Umple metamodels.

As mentioned before, associations and associaki@ses are thought of as first class
citizens in Umple. This means we need to have gesentation of them in models based
on the Umple metamodel. Association classes a@atrand Ecore model does not
explicitly keep track of them, whereas the UML miodiges. An option we have
considered was to add the association class repates into the model. If we add
association classes into the model, however, weerasst of the advantages promised by
EMF. We can no longer take advantage of interoplérabf tools because now Umple
will be using a metamodel different from Ecore éimel XML based serialization could
not be interpreted properly unless the interpretony and the creation tool follow the

same metamodel.

With interoperability eliminated, we now look atdeogeneration. EMF generates fairly
powerful java code, including Ul code. Again, thdEfunctionality does not quite align

with the underlying needs of Umple.

First of all, the Ul code generated by EMF is vieagic — the GUI is simple a tree-based
Eclipse view. If one wants to generate a Ul of atakle quality, one has to turn to the
GMF framework. The GUI generated by EMF is neadglass and so it wouldn’t add

any value to Umple if we were able to generate kivat of Ul along with the rest of the

66

code UmpleCore would generate.

Secondly, EMF claims that the implementation ofgiistem that is generated is easy to
follow. As mentioned in one of the presentationswdtEMF by IBM, “Generated code is
clean, simple, and efficient’[1, slide 39]. Thisaiasily questioned when looking at a very
simple example. Assuming an example consists of omé class Book, with attributes

“title” and “pages”, then the following code is ggated using the EMF generation tool

[2]:

public class Booklmpl extends EObjectimpl implements Book

{

protected static final int PAGES_EDEFAULT =0;
protected int pages = PAGES EDEFAULT,;
public int getPages()

{
}

public void setPages(int newPages)

return pages;

int oldPages = pages;
pages = newPages;
if (eNotificationRequired())
eNotify(new ENotificationImpl(this , Naotification.SET, ...,
oldPages, pages));

Figure 23: EMF generated code.

Here we already see a few troubling features. ,igshat each generated class extends
EObjectimpl class which is part of EMF. This meaash system ever created through
Umple would have to be accompanied with the EMB#&waork. This is a constraint,
even if EMF is an open source project. That is lmsvgenerated code gets much of its
power: through dependence on and interaction wWiliir EOn lines 15 and 16 we see a
call to possible observers. This code was neitkeessary nor required for the

67

implementation of a simple class Book with page$ atitle, which makes the user
wonder “why would it be there?” Umple aims to delia simple front end to generating
code and models, to speed up development and §ritpdi systems and understanding
of these systems. If, however, our implementedesystcontain any code that appears to
not belong there or is difficult to explain, thdmsthinders the simplicity of the system,

and the power it may add the user did not ask for.

EMF is a Java framework. The code it generateaua dnly, and the framework only
comes in Java. This would not fit with Umple, whetttempts to abstract away from
programming languages and be based purely on alnjecitation and modeling.
Therefore if we used Ecore metamodel as a basthéddmple metamodel, and did use
the EMF code generation tool, this code would drdyuseful in Java. If we then
extended Umple to another language (for exampleyRulC++) to prove that it is in fact
a viable concept in any language, we would haveitoplement the wheel for this
particular language. Furthermore, generated Rubdg emuld also have to now have all
the advantages and strengths that its Java coanterpuld offer (due to the use of
EMF). If Umple is to be independent of lower-lela@iguages, it cannot bind itself to

Java as it is done by EMF and Ecore.

Other features EMF-generated code offers is pergistand serialization, automatic
notification of model changes, and a reflection ARlese are features which Umple
plans to support and for which EMF might in timey itself to be more useful then it is

currently, but for now the Umple metamodel is suéhnt, flexible, efficient, and lends

68

itself nicely to the nature of Umple. However, wava learned some lessons from EMF,
and even used one of its components. This compasémt JET framework which was

briefly described in section 2.7.

6.1.2 Umple compiler

This is the heart of the UmpleCore. It is respaesibr overlooking the process of
turning Umple code into an in-memory model basethenUmple metamodel. This
model can then be serialized in the form of gererabde or in the form of UML
diagrams (using the UmpleRSM plug-in). The driviass of this package is the
UmpleSystem. This is where all the actions requicecbmpile and generate code
converge. The main data structure of UmpleSystdimei€lassHash hash table. This is

where each UmpleClass is stored, with its nameeakey.

UmpleRSM
UmpleCore System
Abstract Syntax| model
Parse Tree (AST) .| Interpret [(classHash) Generate » Finish
Umple File v AST Code 4
/
|)/
: /
classHash, /
_____ Y_____J
| Generate |
ANTLR | Class |
Components | _ Diagram |

Figure 24: Compilation process.

Only classes are stored, because everything in &mpElated to classes. This stems

69

from the way we observed UML class diagrams tothetired. For example, a UML
class diagram with just an association or just #ipligity, or even a set of multiplicities
and associations would not be a valid diagram.sEmee is true for Umple — Umple code
consisting solely of a declaration of an assoamti@uld fail to compile. This implies

that classes are the central building blocks cfsctiiagrams and are therefore also
building blocks of Umple code, even though Umpls associations as explicit elements.
By storing only the classes with their appropradsociations and attributes in the
classHash, we have access to everything that teutteclared in an Umple file, while
still offering the majority of the diversity anddeires most commonly used within class

diagrams.

When we say “associations as first class citizews”are referring to the fact that one can
explicitly declare an association between two @assidependently of the declaration of
the classes. Umple declares semantics and synt#ixefee, and they can even appear in

.ump files separate from the files where the classe declared.

6.1.3 ANTLR Parser

Another major player in the UmpleCore is the ANTHBAerated parser and evaluator
component. A pass through these is the first stéfmple code transformation. Figure

25 shows the parser generation.

70

Open source

Generated Java Files
tool

Umple_ASTGrammarLexer.java

Umple_ASTGrammar.g \ /:/V
| |

ANTLR Engine

|
| |
| using ANTLRWorks {
| (using) \
Umple_ASTParser.g "
Umple_ASTEvaluator.java

Grammar Files

Umple_ASTGrammarParser.java

Figure 25: Parser generation usiigTLR

Umple_ASTGrammarLexer.java is the first file usedhe compilation process. This
turns the stream of characters into tokens. Thainséhe parser which is passed this
stream of tokens is now only concerned with se&i@ (End of Line) following an
IDENTIFIER, without having to worry about the vatuim these tokens. This separation

is a standard practice in language parsing.

Most languages are constructed to form a tree.e&iaptype of tree most often used for
language parsing is called Abstract Syntax Tre€l(j)A$his tree would, for example,
store data such as (CLASS String name John). ©his §imply states that at the root of
the tree is a CLASS token, meaning the tree repteseclass construct from Umple. The
rest of the arguments are children of the CLASSenadd they declare there is an

identifier name, which is a string, and has a defalue “John”.

Umple_ASTGrammar.java is the generated parser whitis the stream of tokens into

71

an abstract syntax tree, where the root node iftll as ROOT and all the children
sub-trees represent the constructs given in .ul@pdind the child sub-trees of these are
the constructs given within each class, associati@ssociation class. In this way, the
structure of the code provided and what it is méauad is very easily understandable by
both humans (during debugging) and computers. Un#@d Grammar.java simply turns
a flat stream of tokens into an abstract tree, Wwisdo be parsed by an abstract syntax

tree evaluator.

Furthermore, every time an association or an aggogiclass is encountered, it is put in
a queue. This queue is a list of all structurectvimeed to be parsed in the secondary
phase of compilation. This is because associatiodsassociation classes depend on
other classes. Each association is between tweaedas/hich means that these classes
need to be present in the system at the time opdation of the association, otherwise
we wouldn’'t know what class to assign the assamétip. This is why associations and
association classes are stored in a workQueuatkr lise. However, an important
distinction had to be made when dealing with asdmn classes. Because association
classes are classes as well as associations atfoeefe inherited from classes are
processed during the first stage, along with tlsé wéthe regular classes, and association
features are processed at the later stage, aldhgivei rest of the associations. The queue

stores the AST's of all associations and associatiasses.

Another feature of ANTLR is that it easily allonar freuse. We reuse the same structures

from classes and associations to compile assogialasses, with only having to make

72

minor changes in the actions to take once an assariclass is parsed.

Umple_ASTEvaluator.java is the file which now treses an AST and takes an action
based on what is encountered. Firstly, the ASTaioimg all classes is traversed. This is
because in Umple, classes are the only constiuatslo not depend on other constructs
(at least at the beginning), so they offer a gdadeto start. Every time a new class is
encountered in the tree, a new UmpleClass is aeatd stored in the classHash,
mentioned above, and the key being the name afléiss. After the creation of the class,
the necessary attributes are created within thes @a they are encountered during the
traversing of the tree. The result of this stefhésset of all simple classes specified in the
Umple code stored in a hash table, and each dies$as all the attributes specified in
the code. As Umple only handles single inheritaeaeh Umple class stores a name of

its parent, if one is specified.

Next, each AST in the queue is passed to the etalaad parsed, similarly to the way
classes were parsed. The required classes arvesgtifirom the classHash as needed, and
the appropriate references are created using th@efssociation and

UmpleAssociationClass objects.

At this point we have created an in-memory repregiEm of the model specified in
Umple code. Lastly, the native code file has tepaesed, if any were specified. This
concludes the parsing portion of the process,ahalt of which is an in-memory

representation of the system specified in .umguonp file.

73

Now that the in-memory model is created, the systeale to act upon it. This process

is started by the UmpleSystem.generate() call.prbeess consists of three steps:

- Run some pre-generation operations on the modekdWwill be discussed below.

- lterate through the set of all classes in classiashpass each class to the
generation package.

- lterate through the set of all classes in classHashpass each class to the model

creator package (if a diagram is being drawn a§ .wel

The pre-generation operations are specific tortiamentation language used. In the
case of Java, the pre-generation process creatsgwctor signatures, which are then
reused in some methods and method signaturesh@kit be done in a certain order.
Unlike above in the first phrase, where we simpdyate over the whole set of classes,
this cannot be done that way when generating mettypcitures. This is because class A
may depend on class B if B is a child of A — therefif compiling B before A, then the
method signatures will be incomplete. Therefore,fdllowing algorithm is used when to

generate the appropriate signatures:

74

For each UmpleClass in classHash {
If class is root //has no children
Then: generate signature for class, put class i n readyForGenQueue

Else: put class in waitingForAnotherClassQueue

While(waitingForAnotherClassQueue.size > 0){

Find class in waitingForAnotherClassQueue which d epends on a class which has
its signature generated (i.e. is a member of set re adyForGenQueue)
Generate signature for that class, take out of wa itingForAnotherClassQueue and

put in readyForGenQueue)

}

Figure 26:Pre-generation algorithm.

This algorithm ensures that each class processather a root or has its parent class
method signatures already available. This is nacgger Java because, for example,
when calling the constructor of a class B which zhild of A, we need to include the

arguments passed to A in the signature of B. A eaexample would be:

public class Entity {
public Entity(String ID){

}

public class Student extends Entity {
public Student(String ID, String name){
super (ID);

Figure 27: Java signature example.

Here, the Entity class would be processed firstirftpone of its method signatures

generated as “String ID” and another would be “IB&cause “String ID” is required in

75

the signature of the constructor for Entity’s chi8ludent, when processing Student, the
Entity’s signatures are obtained and added toigmature of the Student. Of course, the

“super(ID);” is also generated, but this doesnpppen until later in the process.

The actual process of generating a signature egdedd to the code-generation package.
This is because all OO languages might have diitesyle of method signatures, and
although they follow from the same process (stergrfiom inheritance which is one of

the features of Object Oriented languages), theshsiyntax will differ.

6.1.4 Java Code Generator

The Java Code Generator component is the one ragpofor all code generation. It
starts off by calling the RunPregenOpsGen.getCadethod, to perform the initial
operations discussed above. This class is gendtataegh the JET framework, which
was introduced in Section 2.7. The class createdlifferent types of signatures possible
for java methods and caches them in the storagéyamaking them available for other

classes and methods to use. This is done so:

Classes do not have to recalculate the same infammaultiple times, therefore
saving time; and

By creating the constructors first, we can make shat all the required
information to construct a valid constructor is itatale (When trying to create
constructors on a class-by-class basis, we runthet@roblem of needing
constructor information about classes which haueyabbeen compiled, as

76

mentioned above).

The different types of signatures are:

» A formal signature — this signature is used in mdtheaders and contains both
variable type and variable name. The name followsravention where the
variable name uses “a” as prefix of the type ilhnmare appropriate name is
specified. An example formal signature is: “Strimgme, RegularFlight
aRegularFlight”.

* Aninformal signature — this signature is differ&m the formal version in that
it does not contain types. These are used wheingalmethod. An example
informal signature is: “name, aRegularFlight”.

Creating and caching these is more efficient threatmng only the formal and then
altering it each time to produce the informal, hessathe method signatures are used very

frequently.

The process of creating the appropriate signaturelatively simple. If the current class

is not a root then the constructor signature ompdrent is fetched and added to a String
variable. Then the list of all attributes withiratttlass is traversed, and each attribute
which did not have a default value specified inlttheple code is also given a name and
inserted into the signature variable. Similarly tist of associations the current class has
to other classes is parsed. If the associationfggethat the current class has to have at
least an X of the other class, where X >0, thes itiieans the object we have an

association that has to be specified in the coostruThis means, for example, that if a

77

RegularFlight class has a 1-* association to Agrlithen at no given time can there be a
RegularFlight without an Airline, and to make sofehis, the Airline is specified in the
constructor, via the aforementioned process (sgeeAgix 2 for the complete Airline

example).

There is one thing to note when dealing with 18aasations. Umple has a special name
for each end of the association. The 1 end isa#fle driver, and the * end is called the
subordinate. When looking at the example mentiegetier, we see that Airline is the
driver of RegularFlight, and RegularFlight is a subnate of Airline. It was necessary to
name these two ends of an association becausetyiieere is no other way to refer to
these, other than simply “end 1” and “end 2”. Thieet/subordinate relationship affects
how the generated code behaves. When the codeatethéry Umple is setting a link of a
bi-directional association between two classesdther class instance will set its
reference to the subordinate instance and them cglecially-designated method in the
subordinate instance (with the driver itself asasgument) to make sure the subordinate
sets its reference to the driver. Without the digton between driver and subordinate,
both classes would have to set its reference tottier class and have to be called by a
third entity (maybe resulting in undesirable asatiens), or each of the classes would
have to set its reference to the other class ahtheaother class to tell it to set its
reference to itself, resulting in infinite recunsid herefore, if working with our standard
airline example, when adding a RegularFlight tosystem, the process of creating links
between classes involved in associations is ieiigtiriven) by the driver, which is the

Airline class in this example. A call to addReg#&laght() method which is generated

78

part of Airline will create a new RegularFlight ngithe arguments supplied to the
addRegularFlight() method, and in the processlitpaiss the context Airline object
(using this Java keyword) to RegularFlight so thaan set its association end to Airline.
From here on, any other associations RegularAigght need to accommodate can be

handled in a similar fashion.

This idea is then extended to all types of assiociatwhere the following algorithm is

used to determine the driver and the subordinate:

1-1 association> the first end specified in the association isdheer.
0..1-anything> the 0..1 end is the driver

Anything else> the first end specified in the association isdheer.

Each generated signature is then slightly altevembhtain the three different versions of
each class constructor signature. The different@dan the signatures is simply in
details. Where one method signature would be “§tin String name”, another
signature type would be “ID, name”, etc. The signas differ depending on the context
in which they are used. The first version of trgnature would be used as part of the
constructor, but the latter would be used whernngathis constructor by another class. In
Java, only the method signatures are needed pramristructing code, so that is all that

is done.

79

6.1.5 Other Eclipse plug-in related concepts

The editor for UmpleCore supports basic syntaxligbgting to make the language easier
to read and scan for important constructs. Theuwrsland styles were chosen to match
with those of the standard Eclipse java editoruBing familiar styles, we hope to
convey the idea that Umple is in many ways simoa¥ava. This is to help combat
developer pushback, by supplying some of the featarany Eclipse users have come to

expect.

e Menu Window Help
Q- |- i EH OG- ™ B L

G824 TestPackage.emx [J] Driver.java [3] TestPackageRegist... P = |m

is is a comment

class FPassangerRole

{
i=fi FPersonRole:
immautable String name

¥

class EwployesRole
i
String jobFunction
ish FersonFRole:
¥

class Ferson
£
String naune;
Integer idihander:
1

class ALirline{}
class Airplane{}
class Bookingi}
class FlightLogi{l

class PersonBEoled{}
class RegularFlighto{
Tims time:
Integer flightMumber:
¥

class SpecificFlighti{
Date date;
F

association {
0..2 PersonFole:
1 Ferson;

¥

association {
* Person:

% Problems 23 Javadoc | Declaration |

0 errors, 38 warnings, O infos

Figure 28: Some of the syntax highlighting usedJlypleCore editor.

Figure 28 shows only some of the highlighting aafali¢ to the user, but it is enough to

show that it is similar to the syntax highlightiafJava, and will hopefully result in

80

impressions of familiarity.

6.2 UML tool — UmpleRSM

The discussion up to this point has been focusaéxinal representation of an object-
oriented system. Umple, however, offers a bridgevben text and models, so it is
necessary to explain how Umple handles the modekpgct of the process. UML
diagrams are potentially very ambiguous artefa®$. [The Umple language is used to
clear up the ambiguity, while leaving the generdiddl diagram somewhat ambiguous,

in the interest of only showing the most importstnticture or features of the system.

UmpleCore is the driving software component inltlneple process. It offers abstract
interfaces to allow for interchange of many of iheernal and external components. One
such component is the code generation packagejssisd above. Another

interchangeable component is the UmpleRSM.

UmpleRSM is the modeling package of our Umple safewUmpleCore calls this
package after it has finished creating the in-mgmmaodel from the textual description

given in .ump and .jump files, and has finishedegating code based on this model.

As the name suggests, this modeling componentischan Rational Software Modeler
(RSM), created by IBM® Rational. RSM is a very \agile and capable subset of tools
offered by IBM Rational Software Architect. Thisbset is sufficient for the purposes of
Umple, which is why it was chosen as the modelowdd. tSome of the other UML

81

modeling tools we looked at were Green UML][6], &HdLet[7] but these tools simply

didn’t meet our expectations of software quality.

One of the very useful features of RSM is the “Aga All” function which simplifies

the necessary work done by the developer, becaesmwot need to worry about laying
out classes in a class diagrams. The task of effilyi laying out classes in a diagram
automatically has been studied and is a diffictdbfem to solve. So when we were

given a chance to work with RSM, the choice wadeasstifiable.

UmpleRSM has a very simple structure. Two out efttiree classes in the only package
in that component are responsible for running thgléRSM plug-in. The other class
(RsmModelCreator) is the one responsible for thekwequired to generate a class

model.

RsmModelCreator implements the ModelCreator interfd his interface only dictates
that whatever package is responsible for modelmygmple system, it must do so using
the update(UmpleClass), update(UmpleAssociatiors}lasd
update(UmpleAssociation) methods. Additional sem&Model() method needs to be
provided which would save the in-memory represe@matf class diagram into a file, so
that it could be read by a displaying tool. Thernhange ability of components stems
from this interface, because UmpleCore is not corezewith how the diagrams are
generated or displayed, it simply provides the datd to create these diagrams.

UmpleCore requires a modeling component at allginaghich is why it contains its own

82

version of a modeling component in UmpleCore.madete default implementation of
the modeling component, however, is empty. Thanigxample of the Null Object

pattern.

Just as the with code generation component, theelmgdcomponent cannot exist by
itself. The Eclipse system running UmpleRSM needsatve UmpleCore plug-in
running. However, the difference between thesedwroponents is that the modeling
component is distributed separately and buildsoprof UmpleCore. When the plug-in is
loaded, it simply initiates the UmpleCore comporeamd passes in itself as the model

creator, therefore overriding the default one.

RSM models are based on UML2 implementation ofEbere model. UML2 is an EMF-

based implementation of the UML 2.x metamodel. Etmmponent hierarchy is illustrated

in Figure 29e.
Ecore Meta-metamooe
Lo I =)
uMmLZ2 Metamode
Lo I S)
Airline model Madel
Lo i =)
Class Diagram Diagram

Figure 29: Dependency diagram for an Airline exaenpl

83

If we consider an Airline system example, the firedult after running UmpleRSM
would be a class diagram (this class diagram isvaho Appendix 2). Because UML2 is
a more functional model then Ecore, it now provittesobjects and classes we require,
namely the Associations, Association Classes, dasgls€s. The process of generating
diagrams is simple transformation from UmpleClastlML2.uml.Class,
UmpleAssociationClass to UML2.uml.AssociationClamsg so on, which are inserted

into a diagram.

The difficult task when creating the modeller comeit was primarily the exploration of
RSM. In particular, exploring how to programmatigareate diagrams which have until
now been created using a GUI, imported from andti@r such as Rational Rose, or
using XML. Adding to this task was the lack of aegent tutorials and documentation.
RSM has gone through radical architectural changkih seem to have been merged
with the old architecture, which meant that thetolwrials called for method calls which
were still present in the system, but were eitlegrecated or not behaving as expected.
Some of the mandatory operations required wereneottioned in any of the tutorials

encountered, adding to the confusion and difficulty

Generating a class diagram requires a few stepsfifgt step is to translate an
UmpleClass into an Uml2.uml.Class and then intamdéN GMF(Graphical Modeling
Framework subcomponent of RSM) uses Nodes to represy multi-edge object, and
uses Edge objects to represent links (such asiaisas or generalizations). After a

blank node is inserted into the diagram objedtenthad to be populated with fields and,

84

if necessary, information within those fields. Ha@g in our early prototypes these
nodes were never showing up properly in the diagedways resulting in an “error box”.
After further investigation, it became apparent tlhdiagram changes need to be
executed within transactional domain as a Reco@imgmand. This was not mentioned
anywhere in any of the tutorials and walkthroughd BAQ’s ever encountered. Much of
the knowledge about what needs to be included anddata should be structured in an
RSM file came from reverse engineering a generatex file, which was serialized in

XML.

However, after experimenting with the modeling comgnt and manipulating it enough
to give the required results, UmpleRSM is ablednagate both Java implementation of
the system specified in Umple code, as well asssalliagram of said system. This is
done simply by clicking on a “compile” icon in tlelipse GUI, without the need for any
additional setup. These two features combined difieiuser the aforementioned model-
code duality, where the implementation and the dwmtation (in form of diagrams) of

the system can be updated each time the code ef/$em is updated.

6.3 Testing

As with any software system, there are many phdsrieed to be tested in different
ways. Umple software is broken up into three sdphréestable components:
UmpleCore, UmpleRSM, and Java Code Generator. Eatiponent is distinct in its

nature and requires a different method of testing.

Common to the testing of all three components, iveweare sample systems. These are a

85

set of systems defined in Umple that we use tatiestlifferent components, and that we
use for regression testing once a change is maaeytof the subcomponents of Umple
software. Umple is designed to be able to handieesys that can be easily modeled
using UML class diagrams, so it is obvious thatsi the various components of the
Umple project, we need a set of systems that qontaious use cases we might wish to

test.

In addition to the system use cases, we also msglefwnit tests to test some of the
important low-level functionality. These were oniged in testing of UmpleCore. These
unit tests were made to test functionality suchdding a class or an association into the
Umple metamodel, or actions taken when encountearisigecial construct in Umple

code, such as encountering the “singleton” patkegnwvord, or “unique” keyword.

The Umple code component has remained fairly stabth a few changes being added
as we progressed on the project. Most of the clsawgehave made to the syntax of
Umple did not affect backward compatibility, whictade our use cases an adequate test
of the overall Umple functionality. When additiorfahctionality was added to the
language, new use cases were often created whokhattvantage of this feature, or

existing systems were altered to do the same.

However, the generation component changed veryoftgh new features and
improvements being put into place almost weeklywisbe described later on, the code

testing framework is set up so that if changesr@ade to the way code is being

86

generated, the tests will pass as long as thenatigenerated code is still present. If the
Java Code Generator component is changed and tieeaged code still passes all of the
tests, then the new code is generated and oveswhiéeold version. This of course means
that the deltas (changes) in new generated codktodee inspected individually by the
developer, but this is an unavoidable drawbackckvis to be expected due to the

difficulty in testing code generation componenttaatically.

There are 17 sample systems currently in our @$tamework. These test cases include
simple hierarchies such as the ones in the Aidixemple, to much more complex
hierarchy in the 2D Shapes sample system. Oth&erags such as the Political Entities,
focus more on complex associations between obj€hts.provides us with a fairly solid
testing base when compared against the intendge oo Umple systems. The sample

systems are all available in Appendix 3.

6.3.1 Testing of UmpleCore

Instead of using unit testing to test each of thiegarts of UmpleCore, which is very
labour intensive, we use a much easier approathweity similar results. What is
important about UmpleCore is the behaviour — gammeraf UmpleClasses,
UmpleAssociations and UmpleAssociationClassesmbdel, and setting of the
appropriate attributes of each. The simplest wagsbwhether these were actually
created in accordance to the model specified inlghgmguage, is to query the system
after code generation for the number of each eotégted. Each time one of these is

added to the model (for example, because a “clasgiecified in the Umple code), the

87

appropriate counter is incremented. When we pas©bthe aforementioned sample
systems through UmpleCore, we know how many of eadistruct are to be created,
which results in a check at the end of expectedugeactual number of created

constructs.

This approach is much simpler and faster then Jigsiing for each class and method in
UmpleCore, but as with any trade off it also offl@ss power then JUnit testing. In
particular, if class attributes weren’t properlyngeated in the model, they wouldn’t be
caught by the UmpleCore testing. However, they wdnd caught by Java Code
Generator testing later in the lifetime of the esde, so overall we did not lose much of

the power offered by rigorous JUnit testing.

6.3.2 Testing generated code

When testing and evaluating the generated codeyevpresented with a few difficulties.
Code of most programming languages is very flexibhes flexibility comes from many
sources. For example, allowing for any number aceg after an identifier, allowing the
open parentheses on the same line of a methodrdgateor after, etc. can result in an

infinite number of possibilities which all exhilsame behaviour.

Another difficulty is performance; to parse genedatode and evaluate it on a token-by-
token basis is as time consuming as parsing tiggnatiUmple code, with the added
complexity of having to perform this operation ptally dozens of times because each

Umple file could turn into many long Java files.rthgrmore, it is not enough to simply

88

check that the generated code follows the rightasyrif this approach is chosen, then the
right semantics must be checked as well, which dioutolve building a tree of paths

and checking them all, same way the Java compiterdwvdo.

A complete generated code testing platform woutiVigle all of the following:

I. Syntax correctness syntax has to be correct from the point of vadhe

language being tested. However, a failing synteck does not necessarily
mean failing system, as will be discussed later.
ii. Semantics- ensuring the generated code functions as expecte

iii. All code elements presertcomments are not considered when parsing code,

which means they must be checked externally byhemabol.
iv. Code style- The generated code has to be readable and fodaain syntax.

v. Fast performance fast testing will result in the ability to chentore test cases

more often.

Some of the points listed are difficult to accorapliPoint ii, for example, would require
associating a set of test cases with Umple codewaming each generated code through

a set of test scenarios to ensure this is met.

Our final solution for testing of the generated edollowed a simplistic approach, which
was both flexible and efficient, while catching rhotthe bugs in our generated system.
This approach was to check generated code againgre-checked standard file, line-

by-line, while omitting all whitespaces. Whitespaekated bugs are often detected during

89

the second stage of our testing. This gives usaat la general idea that if each line which
appears in the pre-checked standard also appetirs generated code, we are fairly
certain that if there is an error, it is in new edqdode which has not yet been put into the
pre-checked standard but is generated in the dutezation). If a line is expected in the
standard but is not present in the tested codeteht fails and process continues to the

next file.

The second portion of the process is to pass tiwéyrgenerated code through a Java
ANTLR parser. If the parser fails somewhere aldrgway, this test once again fails and

process restarts using the next available file.

Standard files are replaced every time we havehezha milestone in the project, at
which point the generated files are manually chéc®d replace the old standards. Even
though this way of testing does not come closestndocomplete, it provides enough
feedback to let us quickly highlight bugs in oungeted code, while not allowing us to
focus our research efforts on the continued deveésp of the Umple software

prototype.

6.3.3 Testing of the UML component

The testing of this component was the most simpliRather than programmatically
testing the presence of elements within the UMULBddlel we would be working with,

the behaviour is simply visually inspected.

90

Visual inspection is the most appropriate way tecththe generated class diagrams
because it allows us to view all the visual propsrof these diagrams. When dealing
with class diagrams, features such as box sizéagodt are important to help visualize

the system as well as convey the most importamtfes of it quickly and efficiently.

6.3.4 UmpleRuntime

UmpleRuntime is a testing tool of the resultinggr@ted code. This testing is performed
on the Umple level of abstraction, giving the optto test on the level of Java code. This
iIs made possible through Java reflection. This makapleRuntime the only piece of
Umple software which is bound to a particular leexge, as the rest of the software can be

easily incorporated with other OO languages.

UmpleRuntime proves useful during regression tgdtiecause it allows for automated
execution of commands on a system. The user créadist of commands according to
the structure of system being tested. If the codeire doesn’t correspond to the
desired UML structure, the test would fail and usegiven feedback about the results. In

this way, we can create, save, and load executigots for each system.

As mentioned in the previous section, our testpraach does not catch all possible

defects in the code. Even if some code compilescantbrms to the expected code, there

91

could still be semantic errors which were not cauglprevious testing stage.
UmpleRuntime is useful for highlighting these typé®rrors, in that it actually executes
the code and observes the behaviour. This is donadh insertion, deletion and
manipulation of Umple generated objects at runtiBesnantic defects affect the
behaviour of a system, and in the lowest levels pshaviour of objects. The

UmpleRuntime tool allows us to test the behavidithese objects.

6.4 Umplepad

We have introduced Umplepad in order to maximizeusability of our tools. Umplepad
is a combination of both Runtime and UmpleCore (gonents which are currently open-
source). This stand-alone version of these compsratlows a user to pick up Umple
very quickly without having to possess any knowkedfout the delivery platform

(Eclipse).

Umplepad is implemented as a rich client Eclipsgfptm. This means that a single
distribution of Umplepad contains all componentd plug-ins necessary to run
UmpleCore and Runtime. Having an all-in-one disttidn like this makes Umple much
more appealing to those looking to quickly try tbels, because it does not require a

lengthy set-up.

92

6.5 Evaluation of Umple and Umple Software — Case Study

As mentioned previously, Appendix 3 provides acgetxample systems implemented
using Umple. These examples, however, do not reptesdustry-grade applications,
and are used more as Umple test cases. To fugkessthe quality of Umple, we used it
to model a system of a much larger scale. Forphipose, we have developed an Airline
example (which is larger than the one in Appendiky2using data obtained from Air

Canada.

As there are many different types of systems bdegloped today, one needs a
taxonomy of software which is used to categorizecaise study. If we use Forward’s
software taxonomy [31], then this example wouldl ifathe Data-dominant software
domain. Characteristics of this domain are a fanhgple control flow over a large

dataset.

This system was developed by reverse engineersmgithCanada flight schedule,
available on the web in a pdf document. From tbiseedule we were able to determine

the metamodel of classes and their relationships Metamodel is shown in Figure 30.

93

] Airport 1
code il
name + destination

+ongin 4

+ flightsFrem |

| FlightTracker £ RegularFlight = RegularLeg *
fighthio + flightsTe
1 * 7 L 1
. * = Frequency
Q RegularFlightSchedule | RegularLegSchedule rnonday
= depTime tuesday
effectiveDate F'l_ + regsched wednesday
discontinuedDate . ?r:: dr;rinﬁ tCrossings thursday
= 1 2 i . 1 | friday
saturday
sunday
1
= AirplaneType
typeCode

Figure 30: Airline case study metamodel.

This metamodel was coded in Umple and a systengeasrated accordingly. Most of
Umple features were used in this case study, imofuithe use of patterns and application
logic. At this point, we have an airline system g¥his able to model the Air Canada

schedule of flights.

UmpleRuntime was used to populate this model va#i objects from the schedule. A
simple script traversed the flights of the schedurld created corresponding
UmpleRuntime commands. In this way, we were abletoeate over 9000 regular

flights using our Umple generated airline system.

94

After the data is loaded using our UmpleRuntimd, tae are then able to manipulate the
data as we wish. One of these ways is to recalb#ted data of the created objects,
effectively modifying the airline schedule. Anothweay is to query the system, in much
the same way the real Air Canada airline systemadvioe queried. One of such queries is
to find all the flights from an origin to a destiima airport which occur on specified days
of the week. Another query is to view all flightsttveen two airports, which make a stop
in another airport. In fact, these queries, an@és®\wothers were input to the system, as
part of the class FlightTracker, using the appitatogic feature of Umple. These
queries can be executed through UmpleRuntime obearatively called by any system

which interacts with our Umple generated airline.

There are, of course, differences between theAie&anada airline system and our case
study, most notably in the fact that Air Canadaaulitedly uses a database to store all
the data, while UmpleRuntime created an in-memepyasentation of it. Also, our

airline system is merely a representation of theeduale, and does not contain any
algorithmic functionality for assigning and creagtinew flights based on the availability
of resources. However, this example helps to ptbeevalidity of Umple on a data-
intensive system. For the full code, the original @Banada schedule, and all other

accompanying data please see Appendix 4 of thigsthe

95

7 Conclusions

The ideas and concepts presented in this thesgaaref an on going effort to unify
modeling and implementation of a system. Even anitiitial stages, it is easy to see that
Umple has large potential which builds on top & MMDE and UML methodology. This
is why there are many advantages which stem frenaltistraction merge proposed by

Umple.

7.1 Research Contributions

We have proposed several questions in Sectioné&séltvere the research questions our
thesis hoped to answer, or provide solutions tes $action briefly outlines our answers

to these research questions.

RQ1: What are the advantages and disadvantageddihg abstractions found in UML
to a Java-like programming languag@®is research question was only partially
answered. We have mentioned the potential advasitagaany parts of this thesis. The
potential advantages include decrease in developtine®, and developers being able to
produce, understand and maintain systems quiclketalthe higher level of abstraction.
However, these remain hypothetical advantages wieeld to be tested through
empirical study. One of the answers offered to d¢fuisstion is that the Umple code is
shorter than the corresponding Java code, whiclibea®en as an advantage. Some of
the disadvantages include the lack of a formaldstechfor implementing these UML

abstractions in object-oriented languages sucls Another disadvantage is that, at

96

the current time, Umple imposes a relatively simptedel on developers. This means
that not every system which can be developed uking can also be developed using
Umple. However, planned future work will expand Uenand the supporting Umple

tools to reduce, and eventually substantially dighinthis limitation.

RQ2: How can we bridge the gap between model apteimentation, by making the
Umple code represent botfhe answer to this question lies in our desigrhefimple
language. Our language is mimetically compatibl§ {ith Java, which makes Umple
feel familiar to users skilled with modern programgilanguages. Even the high level
constructs inherited from UML that were added todlenresemble Java constructs for
better familiarity. Umple software also helps tadige the gap between modeling and
implementation by offering familiar syntax highligig to users of UmpleCore. Lastly,
integration into RSM allows for the user to workhwboth the diagrammatic UML and
the Umple at the same time, thus bridging the gap.ability to edit both diagram and

Umple to manipulate the model will be part of ftwesearch.

RQ3: What are the advantages and disadvantagesxtbased modeling®/e have
highlighted the advantages of text-based modetingany areas of this thesis. One of the
most prominent advantages is that a model of &systn be created much quicker than
a UML drawing tool. Understanding such a modelss aften easier in a textual
environment, because of the inherent structurexdfand code. One of the disadvantages
we have found is that, much like in UML diagranmprmation may become too

cluttered if it is compacted too densely, which nsayse loss of cohesion. Umple

97

combats this through its many cohesion mechani@mee again, these points are mostly

hypothetical and need to be tested empiricallyaasqf future work.

RQ4: To what extent does the Umple approach siyngifelopment? RQ5: To what
extent can the Umple approach speed developntardf? though we offer no formal
empirical proof of the claims that Umple simplifiasd hastens development, we theorize
this based on the properties we have designed Utmplave, and by our case studies.
Umple provides a simpler view of the system thanwiew offered from the point of
view of the implementation code. This is becaustefsmaller number of lines of code
and the fact that Umple operates on the level oLUMis higher level of abstraction,
fewer lines of code and the general simplicityref tode make a system easier to
maintain and develop. This ease of developmenttitaaslates to the speed. Lastly, the
fact that Umple code produces both implementatramhl@ML models means that
updating one results in changes in both, therefavéeng time by combining these two
tasks which would otherwise be done in sequencenerf these would not be done at

all.

RQ6: To what extent can the Umple approach assiktmaintenance® this context,
the task of maintenance refers to understandirgfiegicode, and making changes to it
(further development) and accompanying documemtatiave think of UML class
diagrams as being part of the accompanying docwatient then we have answered this
question already. RQ1, RQ2, and RQ3 discussed afogais an answer as to how

Umple helps with the understanding of existing cade it can be extended to include

98

understanding code in terms of maintenance. Ansteegsestions RQ4 and RQ5 give us

an idea of how Umple helps with the development glmaintenance.

RQ7: To what extent can we create a language taatlhe full power of both a
programming and modelling language, such that iulddoe sufficient in order to
produce a systemPo achieve the full power of a programming langyage introduced
the concept of application logic. This is logic wainicannot yet be generated
automatically and has to be specified by the Usesn though we provide an answer to
this question in this thesis, we recognize thatsmlution is not the best one and is used
only temporarily. The context of specifying act®@mantics and constraints is subject to
much research, since many research groups arenptki ways to implement both
OCL[26,27] and UML Action Semantics into programgpianguages. However, the
current state of UML Action Semantics has been aekas "not the most practical
approach” to specifying actions in a language sascbimple [28]. This research could be

incorporated into Umple, as is touched on in Secti®.3.

7.2 Improving modeling languages

As Umple works so closely with UML, findings abduinple can introduce
improvements and resolve ambiguities in UML, orldaeven spark the creation of new
and better graphical modeling languages. Furthexptibe use of Umple promotes the
use of modeling and UML which also promises furi@rgress and improvements made

in these areas.

99

One improvement which becomes apparent quickliygas WML should incorporate both

a usable textual version, as well as its existiaglical version, taking advantage of
mapping ideas put forth in this work. The textualation has to be easy to use, learn, and
understand for both novice and expert users, howthigeis difficult to accomplish using

a generated language such as the ones created by,Hliscussed in 2.8.2. Umple

would be a much better candidate as textual reptasen of UML because it is more

intuitive and custom tailored to UML, as opposed¢oerically generated from MOF.

7.3 Future work and possibilities

This thesis is the first section of the Umple affdihere is much work and possible

research to be done in order to improve Umple enfiinctionality.

7.3.1 Expanding the Umple concept

To truly harness the power of Umple, it needs textended into other commonly used
model types of UML such as state diagrams. Clemgrdins cannot capture every detail
one might want to model in a system. Umple willnbech more powerful when it
incorporates the ability to textually describe @&virange of UML diagrams, because it
will allow one to describe and implement a systeararcompletely using the modeling

artefacts utilized by UML and Umple.

100

Modeling of state diagrams in code

One of the most common diagrams used by UML prangts is the State diagram. State
diagrams are very useful representations of asysiad can be incorporated easily with
class diagrams both conceptually and technicallgugk and meaningful Umple
representation of state diagrams combined withsaésgyrams can simplify creation,
understanding, management and even maintenangstefiss. This is due to the fact that
even object oriented systems are already very-bted — the instance variables

represent the types of state that can be founddh ebject.

Business process modeling with Umple

Another area where Umple would prove useful isusibess process modeling. Bumple
currently being developed by Andrew Forward in msearch group, is an effort to bring
the Umple approach into the business process wbhid.is facilitated by the observation
that Business Process Modeling Notation (BPMN) Busginess Process Execution

Language (BPEL) are similar in concept to UML aityidiagrams.

Activity diagrams could be modeled using Umple, etthivould result in a more
complete system specification, where Bumple is atete very high level to define
processes and their interactions, while Umple, wifiss and state diagrams is used to
implement these processes at a lower level. Eatipaoent of the system would be
modeled using a branch of Umple, each of whichrsffiee advantages outlined in this

thesis. The system would then also inherit allatieantages one expects from Umple.

101

Concurrency modeling with Umple

Currently, there are no concurrency consideratimnls into Umple, but this is a feature
which needs to be made part of Umple in the futGancurrency could be modeled
through activity diagrams or collaboration diagraatations. Furthermore, barring
further research, sequence diagrams could alssdx even though their usability and

understandability has been questioned [4, 24] émetbpment of complete systems.

Incorporation of OCL to Umple

OCL is a language for describing constraints on Ufiihdels so a translation of this into
Java-like notation would make a natural part of Uamfi would be used to specify
invariants, pre-conditions, post-conditions, artteotypes of logic such as navigation

expressions, the same way it is used by practitsooeUML.

7.3.2 Improving the current state of Umple software

As the Umple software is intended to be prototypeng us the proof of concept, we had
to limit the scope of our work. One of the areagrehUmple could be improved is the
translation and mapping between the different tygfenultiplicities available in class

diagram associations.

102

Umple focuses on the most common types of assoogtised, the ones which make use
of 1-to-many or many-to-many multiplicities. Umpl@@ was tested extensively using
these two configurations. However, there are mahgrgossibilities available to UML
modelers, and so Umple needs to be able to hdmelbe ttases flawlessly. These
possibilities include multiplicities of n and m darality, and the 1-to-1 multiplicity,

which is often problematic and difficult to implenteThe work of Andrew Forward
includes a look at the different types of multiglees and how they could be translated to
working generated code, and so this work will bedu® enhance Umple software and its

capabilities.

7.3.3 Validating our approach

Umple needs to be tested on realistic large-sqgikcations, and by experienced
developers. This is the best way for new languagesnew paradigms to improve and
evolve over time. Umple builds on time-tested ideasl appears to be a logical
advancement in programming methodology. Even sqplgmstill needs developer buy-in
to test both ideas and goals of Umple, as welhasbftware we have developed. There

is much opportunity to test Umple in these waypaxs of future research.

More robust business cases

Using Umple in real systems creates more robushéss cases, and makes it easier to
promote Umple through its past success. These éasirases could be used to both

improve Umple and introduce other developers, idg ones who do not yet use

103

modeling, to the MDE methodology. These businessesaeed to include systems from

all areas of Forward’s taxonomy [31] if softwarest®ms.

Validation through the Open Source community

The open source community (OSC) has had many ssexasd many failures. We
believe that the OSC would be very valuable wheaiuating Umple, because of the
large user base Umple could accumulate, as wélleatechnical expertise offered by the

community.

Combating industry resistance (in applying this new paradigm)

Even though Umple builds on ideas and paradignesdyr in use, there is still an
inherent developer resistance when it comes totaeanology and methodology. The
ultimate goal is to make users aware of the pakativantages of our approach so that

they get excited about it and seek to both usecanttibute to the project.

Using Umple as teaching tool

Lastly, Umple presents opportunities as a teactdoh At the very basic level, Umple
could be used to show students how UML conceptstmapde. Umple generated
systems are designed with simplicity in mind, aokieve the desired functionality while

following good programming practices.

104

Furthermore, Umple could be used to demonstraterpat We already incorporated a
few patterns into both the Umple language and tiegugenerated code, and there is
opportunity to incorporate many more as part aifeiresearch. Besides the advantages
Umple provides to students, student exposure tol&Jmpuld make it more possible that

Umple will gain needed research and developer sujppthe future.

105

References

[1] Chris P. Gane, Trish Sars@tructured Systems Analysis: Tools and Techniques
Prentice Hall Professional Technical Reference9197

[2] JavaScript Object Notatiohttp://www.json.org/

[3] Terence PariThe Definitive ANTLR Reference: Building Domain&#pe
LanguagesISBN:978-0-9787392-5-6, May 2007.

[4] Ritu Agarwal and Atish P. Sinha bf&ct-Oriented Modeling with UML: A Study of
Developers' Perception€ommunications of the ACM, 248 September 2003/46|
No. 9.

[5] Edsger W. DijkstraSelected Writings on Computing: A Personal Perspect
Springer-Verlag, ISBN 0-387-90652-5, 1982

[6] Green UML,http://www.eclipseplugincentral.com/Web_Links-indeq-viewlink-
cid-626.html

[7] UmlLet, http://www.eclipseplugincentral.com/Web_Links-indesqg-viewlink-cid-
492.html

[8] T. Dwayer,Three dimensional UML using force directed lay®@M International
Conference Proceeding Series, Vol. 16,2001

[9] Ivan Kurtev, Jean Bézivin, Frédéric Jouault, Patialduriez,Model-based DLS
FrameworksDynamic Languages Symposium, 2006

[10] Jean BézivinOn the Unification Power of ModelSoftware and System
Modeling, SoSym Journal, 4(2):171-188, 2005

106

[11] OMG Model Driven Architecture Specification,
http://www.omg.org/mda/specs.htm

[12] OMG Unified Modeling Language Specification V2.1.2,
http://www.omg.org/technology/documents/formal/urih

[13] OMG MetaObject Facilityhttp://www.omg.org/mof/

[14] OMG Human-Usable Textual Notation,
http://www.omg.org/technology/documents/formal/hbtm

[15] James Skene, Wolfgang Emmeri8pecifications, not meta-modédisternational
Conference on Software Engineering, 2006.
http://doi.acm.org/10.1145/1138304.1138315

[16] Frederic Richard and Henry F. Ledga#dReminder for Language Designers
ACM SIGPLAN Notices, Vol. 12 No. 12 Pp 73-82. (Detger 1977)

[17] Linda Mclver and Damian Conwa$even Deadly Sins of Introductory
Programming Language Desigm Proceedings, 1996 Conference on Software
Engineering: Education and Practice, IEEE CompuBagiety Press, Los Alamitos,
CA, USA. Pp 309-316. 1996

[18] Forward, A., and Lethbridge T. Rroblems and opportunities for model-centric
versus code-centric software development: a sunvepftware professionalin
Proceedings of MiSE'08 pages 27 - 32. Leipzig, GaynMay 2008

[19] R. France and B. Rumpklodel-driven Development of Complex Software: A
Research Roadmapg~oSE, pp. 27-54, ICSE 2007.

[20] Emfatic Wiki, EMFT,http://wiki.eclipse.org/Emfatic

[21] Emfatic Language Reference. Obtained from Emfaétptdf the Emfatic Eclipse
plug-in, June 2008.

107

[22] Edsger W DijkstraOn the role of scientific thougt&elected writings on
Computing: A Personal Perspectiew York, NY, USA: Springer-Verlag New
York, Inc., pp. 60-66, ISBN 0-387-90652-5. 1982

[23] Ed Merks and Dave Steinbefgodels to Code with Eclipse Modeling
Framework Eclipse CON 2005http://www.eclipsecon.org/2005/tutorials.php

[24] Brian Dobing, Jeffrey Parsondpw UML is usedCommunications of the ACM
Volume 49, Issue 5 (May 2006)ttp://doi.acm.org/10.1145/1125944.1125949

[25] Timothy Lethbridge and Robert Laganie@jject-oriented Software
Engineering: Practical Software Development UsingllAnd JavalSBN 0-07-
710908-2

[26] Bernhard Reus, Martin Wirsing, Rolf HennickérHoare Calculus for Verifying
Java Realizations of OCL-Constrained Design Madelsmidamental Approaches to
Software Engineering, Volume 2029/2001.

[27] Wojciech J. Dzidek, Lionel C. Briand, Yvan Labiche&ssons Learned from
Developing a Dynamic OCL Constraint Enforcementl ToioJava Satellite Events
at the MoDELS 2005 Conference, Volume 3844/2006.

[28] Claudius Heitz, Peter Thiemann, and Thomas Wdlfieegration of an Action
Language Via UML Action Semantidgends in Enterprise Application Architecture,
Volume 4473/2007

[29] OMG Unified Modeling Language Specification (Acti®emantics),
http://www.omg.org/docs/ptc/02-01-09.pdf

[30] Kennedy Carter Ltd., http://www.kc.com/

[31] T.Clark, A. Evans, A. Moore, R. Venkatesh, T. WetgReview of the Response
to OMG RFP ad/98-11-01Action Semantics for the URlgyised Submissiond/®1-
03-01, dated: March 24, 2001

108

[32] Forward, A. and Lethbridgdy Taxonomy of Software Types to Facilitate Search
and Evidence-Based Software EngineeringProceedings of the 2008 conference of
the Centre for Advanced Studies on Collaborativedaech Toronto, Ontario,

Canada, October 27, 2008, IBM Press, Toronto, Ganad

109

Appendices

Appendix 1: Umple syntax specification

(For complete ANTLR specification, please see UmBBTGrammar.g)

* SYNTAX RULES

__ —_—— —_— ——— ——— ——— ____/

prog (useStatement?)(item)* ;
useStatement: ‘use' namespaceExpr;

item: langStruct | namespaceDecl;
namespaceDecl: 'namespace’' namespaceExpr;
namespaceExpr: IDENTIFIER('.' IDENTIFIER)*;

langStruct
: classStruct | associationClass |association ;

classStruct
‘class' IDENTIFIER '{' (classContent)* '};

classContent
classltem | classStruct | appLogic;

appLogic: codeFromUmpleFile;

classltem
: iSARule

| varDecRule

| singletonRule

| implicitAssociationDeclaration

implicitAssociationDeclaration
multiplicity implicitAssociationDirectionality multiplicity IDENTIFIER
(IDENTIFIER)? EOL;

110

implicitAssociationDirectionality

(=1 ;

association
‘association’ '{’ (associationltem)* '}’ ;

associationClass
‘association' IDENTIFIER '{' (associationClassltem)* '}';

associationClassltem
classltem | associationltem;

associationltem
: associationLine ;
isARule : 'isA' IDENTIFIER EOL

singletonRule
'singleton’ EOL;

varDecRule
regVarDec | autoVarDec;

regVarDec
: (unigueDec)?(attributeModifier)? (attributeType)? IDENTIFIER
(EQUALS value)? EOL;
uniqueDec ‘unique’;
attributeModifier
'immutable’|'settable’|'internal’;
autoVarDec

‘autoUnique’ IDENTIFIER EOL;

attributeType
'String’|'Time'|'Integer’|'Float'|'Date’|'Double’|'Boolean’;

associationLine

; multiplicity IDENTIFIER (IDENTIFIER)?
implicitAssociationDirectionality multiplicity IDENTIFIER (IDENTIFIER)? EOL,;
multiplicity: (NUMBER ('..""(NUMBER | *))?)|™";

associationModifier:: ‘immutable’|'nonNavigable’|'internal’|'settable’;

111

roleName: IDENTIFIER,;
value : (StringLiteral) | "™ | (NUMBER);
codeFromUmpleFile: methodDeclaration;

methodDeclaration
(modifier)* type IDENTIFIER '(' formalParameters ")'('throws'
IDENTIFIER (', IDENTIFIER)*)? methodDeclaratorRest;

modifier: 'public’
| 'protected’

| ‘private’

| 'static’

| 'abstract’

| ‘final

| 'native’

| 'synchronized'
| ‘transient’

| ‘volatile'

| 'strictfp’

type primitiveType (T '1)*;

primitiveType
. 'boolean’

| ‘char'

| ‘byte’

| 'short

| int'

| 'long’

| ‘float’

| 'double’

| ‘'void'

| IDENTIFIER

| attributeType;

formalParameters
formalParameterDecls?;

formalParameterDecls
(final)* type formalParameterDeclsRest;

formalParameterDeclsRest
variableDeclaratorld (',' formalParameterDecls)? | '..." variableDeclaratorld;

112

variableDeclaratorld
IDENTIFIER (T '1)*;

methodDeclaratorRest
. formalParameters (' 7)* (methodBody | ;') ;

methodBody: block;
block: ({' (~=({[%}) | block)*}) ;

* LEXER RULES

__ ——_— —_— ——— ——— ——— ____/

NUMBER (DIGIT)+;
IDENTIFIER : LETTER (LETTER|DIGIT|'_)*;

StringLiteral

: ""(EscapeSequence | ~(\\|"))* "™

fragment EscapeSequence
Wbt PPN

fragment LETTER : ('a'.."z'|'A".."Z");
fragment DIGIT: ('0'..'9");

WS o (TN
COMMENT: ‘'[* * [,

LINE_COMMENT: /' ~(\n'[\r)* \r'? \n’;

113

Appendix 2: Airline Example

This is an example showing much of Umple featurekia used as a running example for
this thesis. We refer to this example in many sestias it is useful in demonstrating the
intended use of Umple. This example originates flzmLethbridge’s text book [25].

We have since augmented the example to fit ourgaep

Umple code:

/ *
* A simple system to manage airline schedules and res ervations
* Created: May 16, 2008
*/

/[Creates the facade code in directory called Airli ne

namespace Airline

/[Classes which deal with flights and the airline
namespace Airline.flights
class Airline{
1 -- * RegularFlight;
}

class RegularFlight{
Time time;
uni que Integer flightNumber;
1 -- * SpecificFlight;

}

class SpecificFlight{
uni que Date date;
}

/IClasses which deal with people
namespace Airline.humanResources
class PassangerRole
{

isA PersonRole;

immutable String name;

1 -- * Booking;

class EmployeeRole

{

String jobFunction ;
isA PersonRole;
* -- 1 EmployeeRole supervisor;

114

}

class Person

{

settable String name;
Integer idNumber;
1 -- 0.2 PersonRole;

}

class PersonRole{}

class Booking{
String seatNumber;

}

/IAssociations between subcomponents
association {

* EmployeeRole -- * SpecificFlight;
}
association {
* Booking -- 1 SpecificFlight;
}
association {
1 Airline -- * Person;
}

Generated UML Class diagram:

—|PersonRole - 1
—|Person
name
idhumber
| PassangerRole | EmployeeRole sLpervisor
name jobFunction 1
1 * >
*
—| Booking *
seathumber

115

| Airline

*

| RegularFlight

time

flightMurmber
1

* *

| specificFlight

date
1

Generated package structure and files:

@ 1ava- AirlineSystem.ump - Rational Software Modeler B

Fle Edt Source Refactor Mavigate Search Project UmpleMenu Run Window Help

- | BHEG: |®F |dr |V a O

e AFREE R4 BFUERD T

X N =0

=] AirlineEscample, ump ’r& HirlineExample. emy |E| Hirline humanResa. ., (_, AitlineSystem,ump &3 N

0
E}H Bitline
EIJ_IJ firlineFacade, java
: IEEI firlineReqistry. java
H-iH firline Fights
Elm Airline. java
m RequlatFlight.java
: EI_!_H SpecificFlight java
- iH Ailing.humanResaurces
Efﬂ Booking.java
Elm EmploveeRole,java
m PassangerRole. java
|1| Person.java
E Personolz. java
Efﬂ Airline. json
i &I!ﬂ J50MArray. java
Erﬂ J50HException. java
11| 150NChject java
- (1] 150Nstring. java
EIEI J50NStringer . java
E||1| J50NTokener java
- (1] 150nwriter java
[£}-28, JRE Syskem Library [irel.6.0_02]
'& AirlineSystem, emx
*' RitlineSystem, ump

Ik

* i simple system to wanage airline schedules and reservations
* Created: May 16, 2008

*f

//Creates the facade code in directory called Lirline
namespace Lirline

/{Claszes which deal with flights and the airline
namespace Lirline.flights
clagss Lirline{

1 -- * BegularFlight;

clags FeqularFlight/
Time time;
unigue Integer flightMumber;
1 —- * 3pecificFlight;

clags SpecificFlight{
. unigue Date date;
+

i

ﬂ:_ Problems E@x_]avadnc ‘ Declaration ‘

The code generated by UmpleCore will be available o

http://www.site.uottawa.ca/~tcl/gradtheses/dbremstaky/.

116

